close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 1205

Last change on this file since 1205 was 1205, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 8.1 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "DIVISION"
23 (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order)
24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
26 "POLY-EXACT-DIVIDE"
27 "NORMAL-FORM-STEP"
28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
30 "POLY-NORMALIZE-LIST"
31 "BUCHBERGER-CRITERION"
32 ))
33
34(in-package :division)
35
36(defvar $poly_top_reduction_only nil
37 "If not FALSE, use top reduction only whenever possible.
38Top reduction means that division algorithm stops after the first reduction.")
39
40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41;;
42;; An implementation of the division algorithm
43;;
44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
45
46(defun grobner-op (ring-and-order c1 c2 m f g
47 &aux
48 (ring (ro-ring ring-and-order)))
49 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
50Assume that the leading terms will cancel."
51 (declare (type ring-and-order ring-and-order))
52 #+grobner-check(funcall (ring-zerop ring)
53 (funcall (ring-sub ring)
54 (funcall (ring-mul ring) c2 (poly-lc f))
55 (funcall (ring-mul ring) c1 (poly-lc g))))
56 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
57 ;; Note that below we can drop the leading terms of f ang g for the
58 ;; purpose of polynomial arithmetic. However, the sugar calculation
59 ;; would not be correct if this is done.
60 (poly-sub ring-and-order
61 (scalar-times-poly ring c2 f)
62 (scalar-times-poly ring c1 (monom-times-poly m g))))
63
64(defun poly-pseudo-divide (ring-and-order f fl
65 &aux
66 (ring (ro-ring ring-and-order)))
67 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
68multiple values. The first value is a list of quotients A. The second
69value is the remainder R. The third argument is a scalar coefficient
70C, such that C*F can be divided by FL within the ring of coefficients,
71which is not necessarily a field. Finally, the fourth value is an
72integer count of the number of reductions performed. The resulting
73objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
74 (declare (type poly f) (list fl))
75 (do ((r (make-poly-zero))
76 (c (funcall (ring-unit ring)))
77 (a (make-list (length fl) :initial-element (make-poly-zero)))
78 (division-count 0)
79 (p f))
80 ((poly-zerop p)
81 (debug-cgb "~&~3T~d reduction~:p" division-count)
82 (when (poly-zerop r) (debug-cgb " ---> 0"))
83 (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
84 (declare (fixnum division-count))
85 (do ((fl fl (rest fl)) ;scan list of divisors
86 (b a (rest b)))
87 ((cond
88 ((endp fl) ;no division occurred
89 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
90 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
91 (pop (poly-termlist p)) ;remove lt(p) from p
92 t)
93 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
94 (incf division-count)
95 (multiple-value-bind (gcd c1 c2)
96 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
97 (declare (ignore gcd))
98 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
99 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
100 (mapl #'(lambda (x)
101 (setf (car x) (scalar-times-poly ring c1 (car x))))
102 a)
103 (setf r (scalar-times-poly ring c1 r)
104 c (funcall (ring-mul ring) c c1)
105 p (grobner-op ring-and-order c2 c1 m p (car fl)))
106 (push (make-term m c2) (poly-termlist (car b))))
107 t)))))))
108
109(defun poly-exact-divide (ring f g)
110 "Divide a polynomial F by another polynomial G. Assume that exact division
111with no remainder is possible. Returns the quotient."
112 (declare (type poly f g))
113 (multiple-value-bind (quot rem coeff division-count)
114 (poly-pseudo-divide ring f (list g))
115 (declare (ignore division-count coeff)
116 (list quot)
117 (type poly rem)
118 (type fixnum division-count))
119 (unless (poly-zerop rem) (error "Exact division failed."))
120 (car quot)))
121
122
123
124;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
125;;
126;; An implementation of the normal form
127;;
128;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
129
130(defun normal-form-step (ring-and-order fl p r c division-count
131 &aux
132 (ring (ro-ring ring-and-order))
133 (g (find (poly-lm p) fl
134 :test #'monom-divisible-by-p
135 :key #'poly-lm)))
136 (cond
137 (g ;division possible
138 (incf division-count)
139 (multiple-value-bind (gcd cg cp)
140 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
141 (declare (ignore gcd))
142 (let ((m (monom-div (poly-lm p) (poly-lm g))))
143 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
144 (setf r (scalar-times-poly ring cg r)
145 c (funcall (ring-mul ring) c cg)
146 ;; p := cg*p-cp*m*g
147 p (grobner-op ring-and-order cp cg m p g))))
148 (debug-cgb "/"))
149 (t ;no division possible
150 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
151 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
152 (pop (poly-termlist p)) ;remove lt(p) from p
153 (debug-cgb "+")))
154 (values p r c division-count))
155
156;; Merge it sometime with poly-pseudo-divide
157(defun normal-form (ring-and-order f fl
158 &optional
159 (top-reduction-only $poly_top_reduction_only)
160 (ring (ro-ring ring-and-order)))
161 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
162 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
163 (do ((r (make-poly-zero))
164 (c (funcall (ring-unit ring)))
165 (division-count 0))
166 ((or (poly-zerop f)
167 ;;(endp fl)
168 (and top-reduction-only (not (poly-zerop r))))
169 (progn
170 (debug-cgb "~&~3T~d reduction~:p" division-count)
171 (when (poly-zerop r)
172 (debug-cgb " ---> 0")))
173 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
174 (values f c division-count))
175 (declare (fixnum division-count)
176 (type poly r))
177 (multiple-value-setq (f r c division-count)
178 (normal-form-step ring-and-order fl f r c division-count))))
179
180(defun buchberger-criterion (ring-and-order g)
181 "Returns T if G is a Grobner basis, by using the Buchberger
182criterion: for every two polynomials h1 and h2 in G the S-polynomial
183S(h1,h2) reduces to 0 modulo G."
184 (every
185 #'poly-zerop
186 (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil)
187 (i 0 (- (length g) 2))
188 (j (1+ i) (1- (length g))))))
189
190
191(defun poly-normalize (ring p &aux (c (poly-lc p)))
192 "Divide a polynomial by its leading coefficient. It assumes
193that the division is possible, which may not always be the
194case in rings which are not fields. The exact division operator
195is assumed to be provided by the RING structure."
196 (mapc #'(lambda (term)
197 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
198 (poly-termlist p))
199 p)
200
201(defun poly-normalize-list (ring plist)
202 "Divide every polynomial in a list PLIST by its leading coefficient. "
203 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
Note: See TracBrowser for help on using the repository browser.