close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 469

Last change on this file since 469 was 469, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 7.6 KB
Line 
1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "DIVISION"
23 (:use :cl :ring :monomial :polynomial :grobner-debug :term)
24 (:export "POLY-PSEUDO-DIVIDE"
25 "POLY-EXACT-DIVIDE"
26 "NORMAL-FORM"
27 "POLY-NORMALIZE"
28 ))
29
30(in-package :division)
31
32(defvar $poly_top_reduction_only nil
33 "If not FALSE, use top reduction only whenever possible.
34Top reduction means that division algorithm stops after the first reduction.")
35
36;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37;;
38;; An implementation of the division algorithm
39;;
40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41
42(defun grobner-op (ring c1 c2 m f g)
43 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
44Assume that the leading terms will cancel."
45 #+grobner-check(funcall (ring-zerop ring)
46 (funcall (ring-sub ring)
47 (funcall (ring-mul ring) c2 (poly-lc f))
48 (funcall (ring-mul ring) c1 (poly-lc g))))
49 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
50 ;; Note that we can drop the leading terms of f ang g
51 (poly-sub ring
52 (scalar-times-poly-1 ring c2 f)
53 (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
54
55(defun poly-pseudo-divide (ring f fl)
56 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
57multiple values. The first value is a list of quotients A. The second
58value is the remainder R. The third argument is a scalar coefficient
59C, such that C*F can be divided by FL within the ring of coefficients,
60which is not necessarily a field. Finally, the fourth value is an
61integer count of the number of reductions performed. The resulting
62objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
63 (declare (type poly f) (list fl))
64 (do ((r (make-poly-zero))
65 (c (funcall (ring-unit ring)))
66 (a (make-list (length fl) :initial-element (make-poly-zero)))
67 (division-count 0)
68 (p f))
69 ((poly-zerop p)
70 (debug-cgb "~&~3T~d reduction~:p" division-count)
71 (when (poly-zerop r) (debug-cgb " ---> 0"))
72 (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
73 (declare (fixnum division-count))
74 (do ((fl fl (rest fl)) ;scan list of divisors
75 (b a (rest b)))
76 ((cond
77 ((endp fl) ;no division occurred
78 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
79 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
80 (pop (poly-termlist p)) ;remove lt(p) from p
81 t)
82 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
83 (incf division-count)
84 (multiple-value-bind (gcd c1 c2)
85 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
86 (declare (ignore gcd))
87 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
88 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
89 (mapl #'(lambda (x)
90 (setf (car x) (scalar-times-poly ring c1 (car x))))
91 a)
92 (setf r (scalar-times-poly ring c1 r)
93 c (funcall (ring-mul ring) c c1)
94 p (grobner-op ring c2 c1 m p (car fl)))
95 (push (make-term m c2) (poly-termlist (car b))))
96 t)))))))
97
98(defun poly-exact-divide (ring f g)
99 "Divide a polynomial F by another polynomial G. Assume that exact division
100with no remainder is possible. Returns the quotient."
101 (declare (type poly f g))
102 (multiple-value-bind (quot rem coeff division-count)
103 (poly-pseudo-divide ring f (list g))
104 (declare (ignore division-count coeff)
105 (list quot)
106 (type poly rem)
107 (type fixnum division-count))
108 (unless (poly-zerop rem) (error "Exact division failed."))
109 (car quot)))
110
111
112
113;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
114;;
115;; An implementation of the normal form
116;;
117;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
118
119(defun normal-form-step (ring fl p r c division-count
120 &aux (g (find (poly-lm p) fl
121 :test #'monom-divisible-by-p
122 :key #'poly-lm)))
123 (cond
124 (g ;division possible
125 (incf division-count)
126 (multiple-value-bind (gcd cg cp)
127 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
128 (declare (ignore gcd))
129 (let ((m (monom-div (poly-lm p) (poly-lm g))))
130 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
131 (setf r (scalar-times-poly ring cg r)
132 c (funcall (ring-mul ring) c cg)
133 ;; p := cg*p-cp*m*g
134 p (grobner-op ring cp cg m p g))))
135 (debug-cgb "/"))
136 (t ;no division possible
137 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
138 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
139 (pop (poly-termlist p)) ;remove lt(p) from p
140 (debug-cgb "+")))
141 (values p r c division-count))
142
143;; Merge it sometime with poly-pseudo-divide
144(defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
145 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
146 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
147 (do ((r (make-poly-zero))
148 (c (funcall (ring-unit ring)))
149 (division-count 0))
150 ((or (poly-zerop f)
151 ;;(endp fl)
152 (and top-reduction-only (not (poly-zerop r))))
153 (progn
154 (debug-cgb "~&~3T~d reduction~:p" division-count)
155 (when (poly-zerop r)
156 (debug-cgb " ---> 0")))
157 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
158 (values f c division-count))
159 (declare (fixnum division-count)
160 (type poly r))
161 (multiple-value-setq (f r c division-count)
162 (normal-form-step ring fl f r c division-count))))
163
164(defun buchberger-criterion (ring g)
165 "Returns T if G is a Grobner basis, by using the Buchberger
166criterion: for every two polynomials h1 and h2 in G the S-polynomial
167S(h1,h2) reduces to 0 modulo G."
168 (every
169 #'poly-zerop
170 (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
171 (i 0 (- (length g) 2))
172 (j (1+ i) (1- (length g))))))
173
174
175(defun poly-normalize (ring p &aux (c (poly-lc p)))
176 "Divide a polynomial by its leading coefficient. It assumes
177that the division is possible, which may not always be the
178case in rings which are not fields. The exact division operator
179is assumed to be provided by the RING structure of the
180COEFFICIENT-RING package."
181 (mapc #'(lambda (term)
182 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
183 (poly-termlist p))
184 p)
185
186(defun poly-normalize-list (ring plist)
187 "Divide every polynomial in a list PLIST by its leading coefficient. "
188 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
Note: See TracBrowser for help on using the repository browser.