close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4049

Last change on this file since 4049 was 4049, checked in by Marek Rychlik, 8 years ago

* empty log message *

File size: 10.6 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "DIVISION"
23 (:use :cl :utils :monom :polynomial :grobner-debug)
24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
26 "POLY-EXACT-DIVIDE"
27 "NORMAL-FORM-STEP"
28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
30 "POLY-NORMALIZE-LIST"
31 "BUCHBERGER-CRITERION"
32 "GROBNER-TEST"
33 ))
34
35(in-package :division)
36
37(defvar $poly_top_reduction_only nil
38 "If not FALSE, use top reduction only whenever possible.
39Top reduction means that division algorithm stops after the first reduction.")
40
41;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
42;;
43;; An implementation of the division algorithm
44;;
45;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
46
47(defun grobner-op (c1 c2 m f g)
48 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
49Assume that the leading terms will cancel."
50 (declare (type ring-and-order ring-and-order)
51 (type monom m)
52 (type poly f g))
53 #+grobner-check(universal-zerop
54 (subtract
55 (multiply c2 (leading-coefficient f))
56 (multiply c1 (leading-coefficient g))))
57 #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g)))
58 ;; Note that below we can drop the leading terms of f ang g for the
59 ;; purpose of polynomial arithmetic.
60 ;;
61 ;; TODO: Make sure that the sugar calculation is correct if leading
62 ;; terms are dropped.
63 (subtract
64 (multiply c2 f)
65 (multiply c1 (multiply m g))))
66
67(defun check-loop-invariant (c f a fl r p
68 &aux
69 (p-zero (make-poly-zero))
70 (a (mapcar #'poly-reverse a))
71 (r (poly-reverse r)))
72 "Check loop invariant of division algorithms, when we divide a
73polynomial F by the list of polynomials FL. The invariant is the
74identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
75the list of partial quotients, R is the intermediate value of the
76remainder, and P is the intermediate value which eventually becomes
770. A thing to remember is that the terms of polynomials in A and
78the polynomial R have their terms in reversed order. Hence, before
79the arithmetic is performed, we need to fix the order of terms"
80 #|
81 (format t "~&----------------------------------------------------------------~%")
82 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
83 c f a fl r p)
84 |#
85 (let* ((prod (inner-product a fl #'add #'multiply 0))
86 (succeeded-p
87 (universal-zerop
88 (subtract
89 (multiply c f)
90 (reduce #'add (list prod r p))))))
91 (unless succeeded-p
92 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
93 c f a fl r p))
94 succeeded-p))
95
96
97(defun poly-pseudo-divide (f fl)
98 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
99multiple values. The first value is a list of quotients A. The second
100value is the remainder R. The third argument is a scalar coefficient
101C, such that C*F can be divided by FL within the ring of coefficients,
102which is not necessarily a field. Finally, the fourth value is an
103integer count of the number of reductions performed. The resulting
104objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
105the quotients is initialized to default."
106 (declare (type poly f) (list fl))
107 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
108 (do ((r 0)
109 (c 1)
110 (a (make-list (length fl) :initial-element 0))
111 (division-count 0)
112 (p f))
113 ((universal-zerop p)
114 #+grobner-check(check-loop-invariant c f a fl r p)
115 (debug-cgb "~&~3T~d reduction~:p" division-count)
116 (when (universal-zerop r) (debug-cgb " ---> 0"))
117 ;; We obtained the terms in reverse order, so must fix that
118 (setf a (mapcar #'poly-nreverse a)
119 r (poly-nreverse r))
120 ;; Initialize the sugar of the quotients
121 ;; (mapc #'poly-reset-sugar a) ;; TODO: Sugar is currently unimplemented
122 (values a r c division-count))
123 (declare (fixnum division-count))
124 ;; Check the loop invariant here
125 #+grobner-check(check-loop-invariant c f a fl r p)
126 (do ((fl fl (rest fl)) ;scan list of divisors
127 (b a (rest b)))
128 ((cond
129 ((endp fl) ;no division occurred
130 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
131 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
132 (pop (poly-termlist p)) ;remove lt(p) from p
133 t)
134 ((monom-divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
135 (incf division-count)
136 (multiple-value-bind (gcd c1 c2)
137 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
138 (declare (ignore gcd))
139 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
140 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
141 (mapl #'(lambda (x)
142 (setf (car x) (multiply c1 (car x))))
143 a)
144 (setf r (multiply c1 r)
145 c (multiply c c1)
146 p (grobner-op c2 c1 m p (car fl)))
147 (push (make-term :monom m :coeff c2) (poly-termlist (car b))))
148 t))))
149 )))
150
151(defun poly-exact-divide (f g)
152 "Divide a polynomial F by another polynomial G. Assume that exact division
153with no remainder is possible. Returns the quotient."
154 (declare (type poly f g))
155 (multiple-value-bind (quot rem coeff division-count)
156 (poly-pseudo-divide f (list g))
157 (declare (ignore division-count coeff)
158 (list quot)
159 (type poly rem)
160 (type fixnum division-count))
161 (unless (universal-zerop rem) (error "Exact division failed."))
162 (car quot)))
163
164;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
165;;
166;; An implementation of the normal form
167;;
168;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
169
170(defun normal-form-step (fl p r c division-count
171 &aux
172 (g (find (leading-monomial p) fl
173 :test #'monom-divisible-by-p
174 :key #'leading-monomial)))
175 (cond
176 (g ;division possible
177 (incf division-count)
178 (multiple-value-bind (gcd cg cp)
179 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
180 (declare (ignore gcd))
181 (let ((m (divide (leading-monomial p) (leading-monomial g))))
182 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
183 (setf r (multiply cg r)
184 c (multiply c cg)
185 ;; p := cg*p-cp*m*g
186 p (grobner-op cp cg m p g))))
187 (debug-cgb "/"))
188 (t ;no division possible
189 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
190 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
191 (pop (poly-termlist p)) ;remove lt(p) from p
192 (debug-cgb "+")))
193 (values p r c division-count))
194
195;;
196;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
197;;
198;; TODO: It is hard to test normal form as there is no loop invariant,
199;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
200;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
201;;
202(defun normal-form (f fl
203 &optional
204 (top-reduction-only $poly_top_reduction_only))
205 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
206 (do ((r 0)
207 (c 1)
208 (division-count 0))
209 ((or (universal-zerop f)
210 ;;(endp fl)
211 (and top-reduction-only (not (universal-zerop r))))
212 (progn
213 (debug-cgb "~&~3T~D reduction~:P" division-count)
214 (when (universal-zerop r)
215 (debug-cgb " ---> 0")))
216 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
217 (values f c division-count))
218 (declare (fixnum division-count)
219 (type poly r))
220 (multiple-value-setq (f r c division-count)
221 (normal-form-step fl f r c division-count))))
222
223(defun buchberger-criterion (ring-and-order g)
224 "Returns T if G is a Grobner basis, by using the Buchberger
225criterion: for every two polynomials h1 and h2 in G the S-polynomial
226S(h1,h2) reduces to 0 modulo G."
227 (every #'poly-zerop
228 (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil)
229 (i 0 (- (length g) 2))
230 (j (1+ i) (1- (length g))))))
231
232
233(defun poly-normalize (ring p &aux (c (poly-lc p)))
234 "Divide a polynomial by its leading coefficient. It assumes
235that the division is possible, which may not always be the
236case in rings which are not fields. The exact division operator
237is assumed to be provided by the RING structure."
238 (mapc #'(lambda (term)
239 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
240 (poly-termlist p))
241 p)
242
243(defun poly-normalize-list (ring plist)
244 "Divide every polynomial in a list PLIST by its leading coefficient. "
245 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
246
247;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248;;
249;; The function GROBNER-CHECK is provided primarily for debugging purposes. To
250;; enable verification of grobner bases with BUCHBERGER-CRITERION, do
251;; (pushnew :grobner-check *features*) and compile/load this file.
252;; With this feature, the calculations will slow down CONSIDERABLY.
253;;
254;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
255
256(defun grobner-test (ring-and-order g f)
257 "Test whether G is a Grobner basis and F is contained in G. Return T
258upon success and NIL otherwise."
259 (debug-cgb "~&GROBNER CHECK: ")
260 (let (($poly_grobner_debug nil)
261 (stat1 (buchberger-criterion ring-and-order g))
262 (stat2
263 (every #'poly-zerop
264 (makelist (normal-form ring-and-order (copy-tree (elt f i)) g nil)
265 (i 0 (1- (length f)))))))
266 (unless stat1 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
267 (unless stat2
268 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
269 (debug-cgb "~&GROBNER CHECK END")
270 t)
Note: See TracBrowser for help on using the repository browser.