close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 1177

Last change on this file since 1177 was 1177, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 7.8 KB
Line 
1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "DIVISION"
23 (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order)
24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
26 "POLY-EXACT-DIVIDE"
27 "NORMAL-FORM-STEP"
28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
30 "POLY-NORMALIZE-LIST"
31 "BUCHBERGER-CRITERION"
32 ))
33
34(in-package :division)
35
36(defvar $poly_top_reduction_only nil
37 "If not FALSE, use top reduction only whenever possible.
38Top reduction means that division algorithm stops after the first reduction.")
39
40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41;;
42;; An implementation of the division algorithm
43;;
44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
45
46(defun grobner-op (ring-and-order c1 c2 m f g
47 &aux
48 (ring (ro-ring ring-and-order)))
49 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
50Assume that the leading terms will cancel."
51 #+grobner-check(funcall (ring-zerop ring)
52 (funcall (ring-sub ring)
53 (funcall (ring-mul ring) c2 (poly-lc f))
54 (funcall (ring-mul ring) c1 (poly-lc g))))
55 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
56 ;; Note that we can drop the leading terms of f ang g
57 (poly-sub ring-and-order
58 (scalar-times-poly-1 ring c2 f)
59 (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
60
61(defun poly-pseudo-divide (ring f fl)
62 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
63multiple values. The first value is a list of quotients A. The second
64value is the remainder R. The third argument is a scalar coefficient
65C, such that C*F can be divided by FL within the ring of coefficients,
66which is not necessarily a field. Finally, the fourth value is an
67integer count of the number of reductions performed. The resulting
68objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
69 (declare (type poly f) (list fl))
70 (do ((r (make-poly-zero))
71 (c (funcall (ring-unit ring)))
72 (a (make-list (length fl) :initial-element (make-poly-zero)))
73 (division-count 0)
74 (p f))
75 ((poly-zerop p)
76 (debug-cgb "~&~3T~d reduction~:p" division-count)
77 (when (poly-zerop r) (debug-cgb " ---> 0"))
78 (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
79 (declare (fixnum division-count))
80 (do ((fl fl (rest fl)) ;scan list of divisors
81 (b a (rest b)))
82 ((cond
83 ((endp fl) ;no division occurred
84 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
85 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
86 (pop (poly-termlist p)) ;remove lt(p) from p
87 t)
88 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
89 (incf division-count)
90 (multiple-value-bind (gcd c1 c2)
91 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
92 (declare (ignore gcd))
93 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
94 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
95 (mapl #'(lambda (x)
96 (setf (car x) (scalar-times-poly ring c1 (car x))))
97 a)
98 (setf r (scalar-times-poly ring c1 r)
99 c (funcall (ring-mul ring) c c1)
100 p (grobner-op ring c2 c1 m p (car fl)))
101 (push (make-term m c2) (poly-termlist (car b))))
102 t)))))))
103
104(defun poly-exact-divide (ring f g)
105 "Divide a polynomial F by another polynomial G. Assume that exact division
106with no remainder is possible. Returns the quotient."
107 (declare (type poly f g))
108 (multiple-value-bind (quot rem coeff division-count)
109 (poly-pseudo-divide ring f (list g))
110 (declare (ignore division-count coeff)
111 (list quot)
112 (type poly rem)
113 (type fixnum division-count))
114 (unless (poly-zerop rem) (error "Exact division failed."))
115 (car quot)))
116
117
118
119;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
120;;
121;; An implementation of the normal form
122;;
123;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124
125(defun normal-form-step (ring fl p r c division-count
126 &aux (g (find (poly-lm p) fl
127 :test #'monom-divisible-by-p
128 :key #'poly-lm)))
129 (cond
130 (g ;division possible
131 (incf division-count)
132 (multiple-value-bind (gcd cg cp)
133 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
134 (declare (ignore gcd))
135 (let ((m (monom-div (poly-lm p) (poly-lm g))))
136 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
137 (setf r (scalar-times-poly ring cg r)
138 c (funcall (ring-mul ring) c cg)
139 ;; p := cg*p-cp*m*g
140 p (grobner-op ring cp cg m p g))))
141 (debug-cgb "/"))
142 (t ;no division possible
143 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
144 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
145 (pop (poly-termlist p)) ;remove lt(p) from p
146 (debug-cgb "+")))
147 (values p r c division-count))
148
149;; Merge it sometime with poly-pseudo-divide
150(defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
151 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
152 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
153 (do ((r (make-poly-zero))
154 (c (funcall (ring-unit ring)))
155 (division-count 0))
156 ((or (poly-zerop f)
157 ;;(endp fl)
158 (and top-reduction-only (not (poly-zerop r))))
159 (progn
160 (debug-cgb "~&~3T~d reduction~:p" division-count)
161 (when (poly-zerop r)
162 (debug-cgb " ---> 0")))
163 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
164 (values f c division-count))
165 (declare (fixnum division-count)
166 (type poly r))
167 (multiple-value-setq (f r c division-count)
168 (normal-form-step ring fl f r c division-count))))
169
170(defun buchberger-criterion (ring g)
171 "Returns T if G is a Grobner basis, by using the Buchberger
172criterion: for every two polynomials h1 and h2 in G the S-polynomial
173S(h1,h2) reduces to 0 modulo G."
174 (every
175 #'poly-zerop
176 (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
177 (i 0 (- (length g) 2))
178 (j (1+ i) (1- (length g))))))
179
180
181(defun poly-normalize (ring p &aux (c (poly-lc p)))
182 "Divide a polynomial by its leading coefficient. It assumes
183that the division is possible, which may not always be the
184case in rings which are not fields. The exact division operator
185is assumed to be provided by the RING structure of the
186lCOEFFICIENT-RING package."
187 (mapc #'(lambda (term)
188 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
189 (poly-termlist p))
190 p)
191
192(defun poly-normalize-list (ring plist)
193 "Divide every polynomial in a list PLIST by its leading coefficient. "
194 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
Note: See TracBrowser for help on using the repository browser.