| [1199] | 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| [148] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 3 | ;;; | 
|---|
|  | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 5 | ;;; | 
|---|
|  | 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 9 | ;;;  (at your option) any later version. | 
|---|
|  | 10 | ;;; | 
|---|
|  | 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | ;;;  GNU General Public License for more details. | 
|---|
|  | 15 | ;;; | 
|---|
|  | 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 19 | ;;; | 
|---|
|  | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 21 |  | 
|---|
| [459] | 22 | (defpackage "DIVISION" | 
|---|
| [4087] | 23 | (:use :cl :copy :utils :monom :polynomial :grobner-debug :symbolic-polynomial) | 
|---|
| [470] | 24 | (:export "$POLY_TOP_REDUCTION_ONLY" | 
|---|
|  | 25 | "POLY-PSEUDO-DIVIDE" | 
|---|
| [459] | 26 | "POLY-EXACT-DIVIDE" | 
|---|
| [491] | 27 | "NORMAL-FORM-STEP" | 
|---|
| [459] | 28 | "NORMAL-FORM" | 
|---|
|  | 29 | "POLY-NORMALIZE" | 
|---|
| [472] | 30 | "POLY-NORMALIZE-LIST" | 
|---|
| [473] | 31 | "BUCHBERGER-CRITERION" | 
|---|
| [1299] | 32 | "GROBNER-TEST" | 
|---|
| [4077] | 33 | ) | 
|---|
|  | 34 | (:documentation | 
|---|
| [4079] | 35 | "An implementation of the division algorithm in the polynomial ring.")) | 
|---|
| [148] | 36 |  | 
|---|
| [460] | 37 | (in-package :division) | 
|---|
|  | 38 |  | 
|---|
| [4544] | 39 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) | 
|---|
| [4497] | 40 |  | 
|---|
| [469] | 41 | (defvar $poly_top_reduction_only nil | 
|---|
|  | 42 | "If not FALSE, use top reduction only whenever possible. | 
|---|
|  | 43 | Top reduction means that division algorithm stops after the first reduction.") | 
|---|
|  | 44 |  | 
|---|
| [4485] | 45 | (defmacro grobner-op (c1 c2 m f g) | 
|---|
| [4463] | 46 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial." | 
|---|
| [4485] | 47 | `(subtract (multiply ,f ,c2) (multiply ,g ,m ,c1))) | 
|---|
| [59] | 48 |  | 
|---|
| [4121] | 49 | (defun check-loop-invariant (c f a fl r p &aux (p-zero (make-zero-for f))) | 
|---|
| [1238] | 50 | "Check loop invariant of division algorithms, when we divide a | 
|---|
|  | 51 | polynomial F by the list of polynomials FL. The invariant is the | 
|---|
| [1242] | 52 | identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is | 
|---|
| [1238] | 53 | the list of partial quotients, R is the intermediate value of the | 
|---|
| [1242] | 54 | remainder, and P is the intermediate value which eventually becomes | 
|---|
| [4122] | 55 | 0." | 
|---|
| [1413] | 56 | #| | 
|---|
|  | 57 | (format t "~&----------------------------------------------------------------~%") | 
|---|
|  | 58 | (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
| [1275] | 59 | c f a fl r p) | 
|---|
| [1413] | 60 | |# | 
|---|
| [4065] | 61 | (let* ((prod (inner-product a fl add multiply p-zero)) | 
|---|
| [4463] | 62 | (succeeded-p (universal-zerop (subtract (multiply f c) (add prod (make-instance 'poly :termlist (reverse r)) p))))) | 
|---|
| [4049] | 63 | (unless succeeded-p | 
|---|
|  | 64 | (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
|  | 65 | c f a fl r p)) | 
|---|
|  | 66 | succeeded-p)) | 
|---|
| [1237] | 67 |  | 
|---|
|  | 68 |  | 
|---|
| [4049] | 69 | (defun poly-pseudo-divide (f fl) | 
|---|
| [59] | 70 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return | 
|---|
|  | 71 | multiple values. The first value is a list of quotients A.  The second | 
|---|
|  | 72 | value is the remainder R. The third argument is a scalar coefficient | 
|---|
|  | 73 | C, such that C*F can be divided by FL within the ring of coefficients, | 
|---|
|  | 74 | which is not necessarily a field. Finally, the fourth value is an | 
|---|
|  | 75 | integer count of the number of reductions performed.  The resulting | 
|---|
| [1220] | 76 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of | 
|---|
| [1221] | 77 | the quotients is initialized to default." | 
|---|
| [59] | 78 | (declare (type poly f) (list fl)) | 
|---|
| [1241] | 79 | ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0 | 
|---|
| [4463] | 80 | (do ((r nil) | 
|---|
| [4310] | 81 | (c (make-unit-for (leading-coefficient f))) | 
|---|
| [4054] | 82 | (a (make-list (length fl) :initial-element (make-zero-for f))) | 
|---|
| [59] | 83 | (division-count 0) | 
|---|
|  | 84 | (p f)) | 
|---|
| [4049] | 85 | ((universal-zerop p) | 
|---|
|  | 86 | #+grobner-check(check-loop-invariant c f a fl r p) | 
|---|
| [59] | 87 | (debug-cgb "~&~3T~d reduction~:p" division-count) | 
|---|
| [4463] | 88 | (when (null r) (debug-cgb " ---> 0")) | 
|---|
| [4483] | 89 | (values a (make-instance 'poly :termlist (nreverse r)) c division-count)) | 
|---|
| [59] | 90 | (declare (fixnum division-count)) | 
|---|
| [1252] | 91 | ;; Check the loop invariant here | 
|---|
| [4049] | 92 | #+grobner-check(check-loop-invariant c f a fl r p) | 
|---|
| [1207] | 93 | (do ((fl fl (rest fl))              ;scan list of divisors | 
|---|
| [59] | 94 | (b a (rest b))) | 
|---|
|  | 95 | ((cond | 
|---|
| [4463] | 96 | ((endp fl)                     ;no division occurred | 
|---|
|  | 97 | (push (poly-remove-term p) r) ;move lt(p) to remainder | 
|---|
| [1207] | 98 | t) | 
|---|
| [4055] | 99 | ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred | 
|---|
| [1207] | 100 | (incf division-count) | 
|---|
|  | 101 | (multiple-value-bind (gcd c1 c2) | 
|---|
| [4049] | 102 | (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p)) | 
|---|
| [1207] | 103 | (declare (ignore gcd)) | 
|---|
| [4049] | 104 | (let ((m (divide (leading-monomial p) (leading-monomial (car fl))))) | 
|---|
| [1207] | 105 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1. | 
|---|
|  | 106 | (mapl #'(lambda (x) | 
|---|
| [4102] | 107 | (setf (car x) (multiply-by (car x) c1))) | 
|---|
| [1207] | 108 | a) | 
|---|
| [4463] | 109 | (setf r (mapc #'multiply-by r c1) | 
|---|
| [4109] | 110 | c (multiply-by c c1) | 
|---|
| [4113] | 111 | p (grobner-op c2 c1 m p (car fl))) | 
|---|
| [4484] | 112 | (setf (car b) (add (car b) | 
|---|
| [4089] | 113 | (change-class m 'term :coeff c2)))) | 
|---|
| [1248] | 114 | t)))) | 
|---|
|  | 115 | ))) | 
|---|
| [59] | 116 |  | 
|---|
| [4049] | 117 | (defun poly-exact-divide (f g) | 
|---|
| [59] | 118 | "Divide a polynomial F by another polynomial G. Assume that exact division | 
|---|
|  | 119 | with no remainder is possible. Returns the quotient." | 
|---|
| [4049] | 120 | (declare (type poly f g)) | 
|---|
| [59] | 121 | (multiple-value-bind (quot rem coeff division-count) | 
|---|
| [4049] | 122 | (poly-pseudo-divide f (list g)) | 
|---|
| [59] | 123 | (declare (ignore division-count coeff) | 
|---|
|  | 124 | (list quot) | 
|---|
|  | 125 | (type poly rem) | 
|---|
|  | 126 | (type fixnum division-count)) | 
|---|
| [4049] | 127 | (unless (universal-zerop rem) (error "Exact division failed.")) | 
|---|
| [59] | 128 | (car quot))) | 
|---|
|  | 129 |  | 
|---|
|  | 130 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 131 | ;; | 
|---|
|  | 132 | ;; An implementation of the normal form | 
|---|
|  | 133 | ;; | 
|---|
|  | 134 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 135 |  | 
|---|
| [4049] | 136 | (defun normal-form-step (fl p r c division-count | 
|---|
| [1180] | 137 | &aux | 
|---|
| [4107] | 138 | (g (find (leading-monomial p) fl | 
|---|
| [4051] | 139 | :test #'divisible-by-p | 
|---|
| [4049] | 140 | :key #'leading-monomial))) | 
|---|
| [4463] | 141 | ;; NOTE: Currently R is a list of terms of the remainder | 
|---|
| [59] | 142 | (cond | 
|---|
|  | 143 | (g                                   ;division possible | 
|---|
|  | 144 | (incf division-count) | 
|---|
|  | 145 | (multiple-value-bind (gcd cg cp) | 
|---|
| [4049] | 146 | (universal-ezgcd (leading-coefficient g) (leading-coefficient p)) | 
|---|
| [59] | 147 | (declare (ignore gcd)) | 
|---|
| [4049] | 148 | (let ((m (divide (leading-monomial p) (leading-monomial g)))) | 
|---|
| [59] | 149 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg. | 
|---|
| [4463] | 150 | (setf r (mapc #'(lambda (trm) (multiply-by trm cg)) r) | 
|---|
| [4171] | 151 | c (multiply-by c cg) | 
|---|
| [59] | 152 | ;; p := cg*p-cp*m*g | 
|---|
| [4049] | 153 | p (grobner-op cp cg m p g)))) | 
|---|
| [59] | 154 | (debug-cgb "/")) | 
|---|
| [4463] | 155 | (t                                      ;no division possible | 
|---|
| [4489] | 156 | (setf r (push (poly-remove-term p) r))         ;move lt(p) to remainder | 
|---|
| [59] | 157 | (debug-cgb "+"))) | 
|---|
|  | 158 | (values p r c division-count)) | 
|---|
|  | 159 |  | 
|---|
| [1432] | 160 | ;; | 
|---|
| [1433] | 161 | ;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE. | 
|---|
| [1432] | 162 | ;; | 
|---|
| [1433] | 163 | ;; TODO: It is hard to test normal form as there is no loop invariant, | 
|---|
|  | 164 | ;; like for POLY-PSEUDO-DIVIDE.  Is there a testing strategy? One | 
|---|
|  | 165 | ;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE. | 
|---|
|  | 166 | ;; | 
|---|
| [4209] | 167 | (defun normal-form (f fl &optional (top-reduction-only $poly_top_reduction_only)) | 
|---|
| [1568] | 168 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list.")) | 
|---|
| [4207] | 169 | (when (universal-zerop f) | 
|---|
|  | 170 | #+grobner-check(when (null fl) (warn "normal-form: Dividend is zero.")) | 
|---|
|  | 171 | ;; NOTE: When the polynomial F is zero, we cannot constuct the | 
|---|
|  | 172 | ;; unit in the coefficient field. | 
|---|
|  | 173 | (return-from normal-form (values f nil 0))) | 
|---|
| [4463] | 174 | (do ((r nil) | 
|---|
| [4206] | 175 | (c (make-unit-for (leading-coefficient f))) | 
|---|
| [1254] | 176 | (division-count 0)) | 
|---|
| [4049] | 177 | ((or (universal-zerop f) | 
|---|
| [59] | 178 | ;;(endp fl) | 
|---|
| [4463] | 179 | (and top-reduction-only (not (null r)))) | 
|---|
| [59] | 180 | (progn | 
|---|
| [1239] | 181 | (debug-cgb "~&~3T~D reduction~:P" division-count) | 
|---|
| [4463] | 182 | (when (null r) | 
|---|
| [59] | 183 | (debug-cgb " ---> 0"))) | 
|---|
| [4463] | 184 | (setf (poly-termlist f) (nreconc r (poly-termlist f))) | 
|---|
| [59] | 185 | (values f c division-count)) | 
|---|
| [4463] | 186 | (declare (fixnum division-count)) | 
|---|
| [59] | 187 | (multiple-value-setq (f r c division-count) | 
|---|
| [4049] | 188 | (normal-form-step fl f r c division-count)))) | 
|---|
| [59] | 189 |  | 
|---|
| [4050] | 190 | (defun buchberger-criterion (g) | 
|---|
| [59] | 191 | "Returns T if G is a Grobner basis, by using the Buchberger | 
|---|
|  | 192 | criterion: for every two polynomials h1 and h2 in G the S-polynomial | 
|---|
|  | 193 | S(h1,h2) reduces to 0 modulo G." | 
|---|
| [4051] | 194 | (every #'universal-zerop | 
|---|
| [4102] | 195 | (makelist (normal-form (s-polynomial (elt g i) (elt g j)) g nil) | 
|---|
| [1222] | 196 | (i 0 (- (length g) 2)) | 
|---|
|  | 197 | (j (1+ i) (1- (length g)))))) | 
|---|
| [59] | 198 |  | 
|---|
| [64] | 199 |  | 
|---|
| [4051] | 200 | (defun poly-normalize (p &aux (c (leading-coefficient p))) | 
|---|
| [64] | 201 | "Divide a polynomial by its leading coefficient. It assumes | 
|---|
|  | 202 | that the division is possible, which may not always be the | 
|---|
|  | 203 | case in rings which are not fields. The exact division operator | 
|---|
| [1197] | 204 | is assumed to be provided by the RING structure." | 
|---|
| [64] | 205 | (mapc #'(lambda (term) | 
|---|
| [4051] | 206 | (setf (term-coeff term) (divide (term-coeff term) c))) | 
|---|
| [64] | 207 | (poly-termlist p)) | 
|---|
|  | 208 | p) | 
|---|
|  | 209 |  | 
|---|
| [4051] | 210 | (defun poly-normalize-list (plist) | 
|---|
| [64] | 211 | "Divide every polynomial in a list PLIST by its leading coefficient. " | 
|---|
| [4051] | 212 | (mapcar #'(lambda (x) (poly-normalize x)) plist)) | 
|---|
| [1297] | 213 |  | 
|---|
| [4051] | 214 | (defun grobner-test (g f) | 
|---|
| [1297] | 215 | "Test whether G is a Grobner basis and F is contained in G. Return T | 
|---|
| [4211] | 216 | upon success and NIL otherwise. The function GROBNER-TEST is provided | 
|---|
|  | 217 | primarily for debugging purposes. To enable verification of grobner | 
|---|
|  | 218 | bases with BUCHBERGER-CRITERION, do | 
|---|
| [4210] | 219 | (pushnew :grobner-check *features*) and compile/load this file.  With | 
|---|
|  | 220 | this feature, the calculations will slow down CONSIDERABLY." | 
|---|
| [1297] | 221 | (debug-cgb "~&GROBNER CHECK: ") | 
|---|
|  | 222 | (let (($poly_grobner_debug nil) | 
|---|
| [4051] | 223 | (stat1 (buchberger-criterion g)) | 
|---|
| [1297] | 224 | (stat2 | 
|---|
| [4199] | 225 | (every #'universal-zerop | 
|---|
| [4483] | 226 | (makelist (normal-form (copy-instance (elt f i)) (mapcar #'copy-instance g) nil) | 
|---|
| [4199] | 227 | (i 0 (1- (length f))))))) | 
|---|
| [4200] | 228 | (unless stat1 | 
|---|
|  | 229 | (error "~&Buchberger criterion failed, not a grobner basis: ~A" g)) | 
|---|
| [1297] | 230 | (unless stat2 | 
|---|
| [1406] | 231 | (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f))) | 
|---|
| [1297] | 232 | (debug-cgb "~&GROBNER CHECK END") | 
|---|
|  | 233 | t) | 
|---|