close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4490

Last change on this file since 4490 was 4489, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.4 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[4087]23 (:use :cl :copy :utils :monom :polynomial :grobner-debug :symbolic-polynomial)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[4077]33 )
34 (:documentation
[4079]35 "An implementation of the division algorithm in the polynomial ring."))
[148]36
[460]37(in-package :division)
38
[469]39(defvar $poly_top_reduction_only nil
40 "If not FALSE, use top reduction only whenever possible.
41Top reduction means that division algorithm stops after the first reduction.")
42
[4485]43(defmacro grobner-op (c1 c2 m f g)
[4463]44 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial."
[4485]45 `(subtract (multiply ,f ,c2) (multiply ,g ,m ,c1)))
[59]46
[4121]47(defun check-loop-invariant (c f a fl r p &aux (p-zero (make-zero-for f)))
[1238]48 "Check loop invariant of division algorithms, when we divide a
49polynomial F by the list of polynomials FL. The invariant is the
[1242]50identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]51the list of partial quotients, R is the intermediate value of the
[1242]52remainder, and P is the intermediate value which eventually becomes
[4122]530."
[1413]54 #|
55 (format t "~&----------------------------------------------------------------~%")
56 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]57 c f a fl r p)
[1413]58 |#
[4065]59 (let* ((prod (inner-product a fl add multiply p-zero))
[4463]60 (succeeded-p (universal-zerop (subtract (multiply f c) (add prod (make-instance 'poly :termlist (reverse r)) p)))))
[4049]61 (unless succeeded-p
62 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
63 c f a fl r p))
64 succeeded-p))
[1237]65
66
[4049]67(defun poly-pseudo-divide (f fl)
[59]68 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
69multiple values. The first value is a list of quotients A. The second
70value is the remainder R. The third argument is a scalar coefficient
71C, such that C*F can be divided by FL within the ring of coefficients,
72which is not necessarily a field. Finally, the fourth value is an
73integer count of the number of reductions performed. The resulting
[1220]74objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]75the quotients is initialized to default."
[59]76 (declare (type poly f) (list fl))
[1241]77 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[4463]78 (do ((r nil)
[4310]79 (c (make-unit-for (leading-coefficient f)))
[4054]80 (a (make-list (length fl) :initial-element (make-zero-for f)))
[59]81 (division-count 0)
82 (p f))
[4049]83 ((universal-zerop p)
84 #+grobner-check(check-loop-invariant c f a fl r p)
[59]85 (debug-cgb "~&~3T~d reduction~:p" division-count)
[4463]86 (when (null r) (debug-cgb " ---> 0"))
[4483]87 (values a (make-instance 'poly :termlist (nreverse r)) c division-count))
[59]88 (declare (fixnum division-count))
[1252]89 ;; Check the loop invariant here
[4049]90 #+grobner-check(check-loop-invariant c f a fl r p)
[1207]91 (do ((fl fl (rest fl)) ;scan list of divisors
[59]92 (b a (rest b)))
93 ((cond
[4463]94 ((endp fl) ;no division occurred
95 (push (poly-remove-term p) r) ;move lt(p) to remainder
[1207]96 t)
[4055]97 ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
[1207]98 (incf division-count)
99 (multiple-value-bind (gcd c1 c2)
[4049]100 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
[1207]101 (declare (ignore gcd))
[4049]102 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
[1207]103 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
104 (mapl #'(lambda (x)
[4102]105 (setf (car x) (multiply-by (car x) c1)))
[1207]106 a)
[4463]107 (setf r (mapc #'multiply-by r c1)
[4109]108 c (multiply-by c c1)
[4113]109 p (grobner-op c2 c1 m p (car fl)))
[4484]110 (setf (car b) (add (car b)
[4089]111 (change-class m 'term :coeff c2))))
[1248]112 t))))
113 )))
[59]114
[4049]115(defun poly-exact-divide (f g)
[59]116 "Divide a polynomial F by another polynomial G. Assume that exact division
117with no remainder is possible. Returns the quotient."
[4049]118 (declare (type poly f g))
[59]119 (multiple-value-bind (quot rem coeff division-count)
[4049]120 (poly-pseudo-divide f (list g))
[59]121 (declare (ignore division-count coeff)
122 (list quot)
123 (type poly rem)
124 (type fixnum division-count))
[4049]125 (unless (universal-zerop rem) (error "Exact division failed."))
[59]126 (car quot)))
127
128;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
129;;
130;; An implementation of the normal form
131;;
132;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
133
[4049]134(defun normal-form-step (fl p r c division-count
[1180]135 &aux
[4107]136 (g (find (leading-monomial p) fl
[4051]137 :test #'divisible-by-p
[4049]138 :key #'leading-monomial)))
[4463]139 ;; NOTE: Currently R is a list of terms of the remainder
[59]140 (cond
141 (g ;division possible
142 (incf division-count)
143 (multiple-value-bind (gcd cg cp)
[4049]144 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
[59]145 (declare (ignore gcd))
[4049]146 (let ((m (divide (leading-monomial p) (leading-monomial g))))
[59]147 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
[4463]148 (setf r (mapc #'(lambda (trm) (multiply-by trm cg)) r)
[4171]149 c (multiply-by c cg)
[59]150 ;; p := cg*p-cp*m*g
[4049]151 p (grobner-op cp cg m p g))))
[59]152 (debug-cgb "/"))
[4463]153 (t ;no division possible
[4489]154 (setf r (push (poly-remove-term p) r)) ;move lt(p) to remainder
[59]155 (debug-cgb "+")))
156 (values p r c division-count))
157
[1432]158;;
[1433]159;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
[1432]160;;
[1433]161;; TODO: It is hard to test normal form as there is no loop invariant,
162;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
163;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
164;;
[4209]165(defun normal-form (f fl &optional (top-reduction-only $poly_top_reduction_only))
[1568]166 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
[4207]167 (when (universal-zerop f)
168 #+grobner-check(when (null fl) (warn "normal-form: Dividend is zero."))
169 ;; NOTE: When the polynomial F is zero, we cannot constuct the
170 ;; unit in the coefficient field.
171 (return-from normal-form (values f nil 0)))
[4463]172 (do ((r nil)
[4206]173 (c (make-unit-for (leading-coefficient f)))
[1254]174 (division-count 0))
[4049]175 ((or (universal-zerop f)
[59]176 ;;(endp fl)
[4463]177 (and top-reduction-only (not (null r))))
[59]178 (progn
[1239]179 (debug-cgb "~&~3T~D reduction~:P" division-count)
[4463]180 (when (null r)
[59]181 (debug-cgb " ---> 0")))
[4463]182 (setf (poly-termlist f) (nreconc r (poly-termlist f)))
[59]183 (values f c division-count))
[4463]184 (declare (fixnum division-count))
[59]185 (multiple-value-setq (f r c division-count)
[4049]186 (normal-form-step fl f r c division-count))))
[59]187
[4050]188(defun buchberger-criterion (g)
[59]189 "Returns T if G is a Grobner basis, by using the Buchberger
190criterion: for every two polynomials h1 and h2 in G the S-polynomial
191S(h1,h2) reduces to 0 modulo G."
[4051]192 (every #'universal-zerop
[4102]193 (makelist (normal-form (s-polynomial (elt g i) (elt g j)) g nil)
[1222]194 (i 0 (- (length g) 2))
195 (j (1+ i) (1- (length g))))))
[59]196
[64]197
[4051]198(defun poly-normalize (p &aux (c (leading-coefficient p)))
[64]199 "Divide a polynomial by its leading coefficient. It assumes
200that the division is possible, which may not always be the
201case in rings which are not fields. The exact division operator
[1197]202is assumed to be provided by the RING structure."
[64]203 (mapc #'(lambda (term)
[4051]204 (setf (term-coeff term) (divide (term-coeff term) c)))
[64]205 (poly-termlist p))
206 p)
207
[4051]208(defun poly-normalize-list (plist)
[64]209 "Divide every polynomial in a list PLIST by its leading coefficient. "
[4051]210 (mapcar #'(lambda (x) (poly-normalize x)) plist))
[1297]211
[4051]212(defun grobner-test (g f)
[1297]213 "Test whether G is a Grobner basis and F is contained in G. Return T
[4211]214upon success and NIL otherwise. The function GROBNER-TEST is provided
215primarily for debugging purposes. To enable verification of grobner
216bases with BUCHBERGER-CRITERION, do
[4210]217(pushnew :grobner-check *features*) and compile/load this file. With
218this feature, the calculations will slow down CONSIDERABLY."
[1297]219 (debug-cgb "~&GROBNER CHECK: ")
220 (let (($poly_grobner_debug nil)
[4051]221 (stat1 (buchberger-criterion g))
[1297]222 (stat2
[4199]223 (every #'universal-zerop
[4483]224 (makelist (normal-form (copy-instance (elt f i)) (mapcar #'copy-instance g) nil)
[4199]225 (i 0 (1- (length f)))))))
[4200]226 (unless stat1
227 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]228 (unless stat2
[1406]229 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]230 (debug-cgb "~&GROBNER CHECK END")
231 t)
Note: See TracBrowser for help on using the repository browser.