close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4473

Last change on this file since 4473 was 4463, checked in by Marek Rychlik, 9 years ago
File size: 9.4 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[4087]23 (:use :cl :copy :utils :monom :polynomial :grobner-debug :symbolic-polynomial)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[4077]33 )
34 (:documentation
[4079]35 "An implementation of the division algorithm in the polynomial ring."))
[148]36
[460]37(in-package :division)
38
[469]39(defvar $poly_top_reduction_only nil
40 "If not FALSE, use top reduction only whenever possible.
41Top reduction means that division algorithm stops after the first reduction.")
42
[59]43
[4048]44(defun grobner-op (c1 c2 m f g)
[4463]45 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial."
46 (declare (type monom m) (type poly f g))
47 (subtract (multiply f c2) (multiply g m c1)))
[59]48
[4121]49(defun check-loop-invariant (c f a fl r p &aux (p-zero (make-zero-for f)))
[1238]50 "Check loop invariant of division algorithms, when we divide a
51polynomial F by the list of polynomials FL. The invariant is the
[1242]52identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]53the list of partial quotients, R is the intermediate value of the
[1242]54remainder, and P is the intermediate value which eventually becomes
[4122]550."
[1413]56 #|
57 (format t "~&----------------------------------------------------------------~%")
58 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]59 c f a fl r p)
[1413]60 |#
[4065]61 (let* ((prod (inner-product a fl add multiply p-zero))
[4463]62 (succeeded-p (universal-zerop (subtract (multiply f c) (add prod (make-instance 'poly :termlist (reverse r)) p)))))
[4049]63 (unless succeeded-p
64 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
65 c f a fl r p))
66 succeeded-p))
[1237]67
68
[4049]69(defun poly-pseudo-divide (f fl)
[59]70 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
71multiple values. The first value is a list of quotients A. The second
72value is the remainder R. The third argument is a scalar coefficient
73C, such that C*F can be divided by FL within the ring of coefficients,
74which is not necessarily a field. Finally, the fourth value is an
75integer count of the number of reductions performed. The resulting
[1220]76objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]77the quotients is initialized to default."
[59]78 (declare (type poly f) (list fl))
[1241]79 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[4463]80 (do ((r nil)
[4310]81 (c (make-unit-for (leading-coefficient f)))
[4054]82 (a (make-list (length fl) :initial-element (make-zero-for f)))
[59]83 (division-count 0)
84 (p f))
[4049]85 ((universal-zerop p)
86 #+grobner-check(check-loop-invariant c f a fl r p)
[59]87 (debug-cgb "~&~3T~d reduction~:p" division-count)
[4463]88 (when (null r) (debug-cgb " ---> 0"))
89 (values a (make-instance 'poly :termlist r) c division-count))
[59]90 (declare (fixnum division-count))
[1252]91 ;; Check the loop invariant here
[4049]92 #+grobner-check(check-loop-invariant c f a fl r p)
[1207]93 (do ((fl fl (rest fl)) ;scan list of divisors
[59]94 (b a (rest b)))
95 ((cond
[4463]96 ((endp fl) ;no division occurred
97 (push (poly-remove-term p) r) ;move lt(p) to remainder
[1207]98 t)
[4055]99 ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
[1207]100 (incf division-count)
101 (multiple-value-bind (gcd c1 c2)
[4049]102 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
[1207]103 (declare (ignore gcd))
[4049]104 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
[1207]105 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
106 (mapl #'(lambda (x)
[4102]107 (setf (car x) (multiply-by (car x) c1)))
[1207]108 a)
[4463]109 (setf r (mapc #'multiply-by r c1)
[4109]110 c (multiply-by c c1)
[4113]111 p (grobner-op c2 c1 m p (car fl)))
[4089]112 (setf (car b) (add (car b)
113 (change-class m 'term :coeff c2))))
[1248]114 t))))
115 )))
[59]116
[4049]117(defun poly-exact-divide (f g)
[59]118 "Divide a polynomial F by another polynomial G. Assume that exact division
119with no remainder is possible. Returns the quotient."
[4049]120 (declare (type poly f g))
[59]121 (multiple-value-bind (quot rem coeff division-count)
[4049]122 (poly-pseudo-divide f (list g))
[59]123 (declare (ignore division-count coeff)
124 (list quot)
125 (type poly rem)
126 (type fixnum division-count))
[4049]127 (unless (universal-zerop rem) (error "Exact division failed."))
[59]128 (car quot)))
129
130;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
131;;
132;; An implementation of the normal form
133;;
134;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
135
[4049]136(defun normal-form-step (fl p r c division-count
[1180]137 &aux
[4107]138 (g (find (leading-monomial p) fl
[4051]139 :test #'divisible-by-p
[4049]140 :key #'leading-monomial)))
[4463]141 ;; NOTE: Currently R is a list of terms of the remainder
[59]142 (cond
143 (g ;division possible
144 (incf division-count)
145 (multiple-value-bind (gcd cg cp)
[4049]146 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
[59]147 (declare (ignore gcd))
[4049]148 (let ((m (divide (leading-monomial p) (leading-monomial g))))
[59]149 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
[4463]150 (setf r (mapc #'(lambda (trm) (multiply-by trm cg)) r)
[4171]151 c (multiply-by c cg)
[59]152 ;; p := cg*p-cp*m*g
[4049]153 p (grobner-op cp cg m p g))))
[59]154 (debug-cgb "/"))
[4463]155 (t ;no division possible
156 (setf r (push (poly-remove-term p) r)) ;move lt(p) to remainder
[59]157 (debug-cgb "+")))
158 (values p r c division-count))
159
[1432]160;;
[1433]161;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
[1432]162;;
[1433]163;; TODO: It is hard to test normal form as there is no loop invariant,
164;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
165;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
166;;
[4209]167(defun normal-form (f fl &optional (top-reduction-only $poly_top_reduction_only))
[1568]168 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
[4207]169 (when (universal-zerop f)
170 #+grobner-check(when (null fl) (warn "normal-form: Dividend is zero."))
171 ;; NOTE: When the polynomial F is zero, we cannot constuct the
172 ;; unit in the coefficient field.
173 (return-from normal-form (values f nil 0)))
[4463]174 (do ((r nil)
[4206]175 (c (make-unit-for (leading-coefficient f)))
[1254]176 (division-count 0))
[4049]177 ((or (universal-zerop f)
[59]178 ;;(endp fl)
[4463]179 (and top-reduction-only (not (null r))))
[59]180 (progn
[1239]181 (debug-cgb "~&~3T~D reduction~:P" division-count)
[4463]182 (when (null r)
[59]183 (debug-cgb " ---> 0")))
[4463]184 (setf (poly-termlist f) (nreconc r (poly-termlist f)))
[59]185 (values f c division-count))
[4463]186 (declare (fixnum division-count))
[59]187 (multiple-value-setq (f r c division-count)
[4049]188 (normal-form-step fl f r c division-count))))
[59]189
[4050]190(defun buchberger-criterion (g)
[59]191 "Returns T if G is a Grobner basis, by using the Buchberger
192criterion: for every two polynomials h1 and h2 in G the S-polynomial
193S(h1,h2) reduces to 0 modulo G."
[4051]194 (every #'universal-zerop
[4102]195 (makelist (normal-form (s-polynomial (elt g i) (elt g j)) g nil)
[1222]196 (i 0 (- (length g) 2))
197 (j (1+ i) (1- (length g))))))
[59]198
[64]199
[4051]200(defun poly-normalize (p &aux (c (leading-coefficient p)))
[64]201 "Divide a polynomial by its leading coefficient. It assumes
202that the division is possible, which may not always be the
203case in rings which are not fields. The exact division operator
[1197]204is assumed to be provided by the RING structure."
[64]205 (mapc #'(lambda (term)
[4051]206 (setf (term-coeff term) (divide (term-coeff term) c)))
[64]207 (poly-termlist p))
208 p)
209
[4051]210(defun poly-normalize-list (plist)
[64]211 "Divide every polynomial in a list PLIST by its leading coefficient. "
[4051]212 (mapcar #'(lambda (x) (poly-normalize x)) plist))
[1297]213
[4051]214(defun grobner-test (g f)
[1297]215 "Test whether G is a Grobner basis and F is contained in G. Return T
[4211]216upon success and NIL otherwise. The function GROBNER-TEST is provided
217primarily for debugging purposes. To enable verification of grobner
218bases with BUCHBERGER-CRITERION, do
[4210]219(pushnew :grobner-check *features*) and compile/load this file. With
220this feature, the calculations will slow down CONSIDERABLY."
[1297]221 (debug-cgb "~&GROBNER CHECK: ")
222 (let (($poly_grobner_debug nil)
[4051]223 (stat1 (buchberger-criterion g))
[1297]224 (stat2
[4199]225 (every #'universal-zerop
226 (makelist (normal-form (copy-instance (elt f i)) g nil)
227 (i 0 (1- (length f)))))))
[4200]228 (unless stat1
229 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]230 (unless stat2
[1406]231 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]232 (debug-cgb "~&GROBNER CHECK END")
233 t)
Note: See TracBrowser for help on using the repository browser.