close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4373

Last change on this file since 4373 was 4310, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 9.9 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[4087]23 (:use :cl :copy :utils :monom :polynomial :grobner-debug :symbolic-polynomial)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[4077]33 )
34 (:documentation
[4079]35 "An implementation of the division algorithm in the polynomial ring."))
[148]36
[460]37(in-package :division)
38
[469]39(defvar $poly_top_reduction_only nil
40 "If not FALSE, use top reduction only whenever possible.
41Top reduction means that division algorithm stops after the first reduction.")
42
[59]43
[4048]44(defun grobner-op (c1 c2 m f g)
[59]45 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
46Assume that the leading terms will cancel."
[4051]47 (declare (type monom m)
[1965]48 (type poly f g))
[4048]49 #+grobner-check(universal-zerop
50 (subtract
51 (multiply c2 (leading-coefficient f))
52 (multiply c1 (leading-coefficient g))))
[4049]53 #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g)))
[1205]54 ;; Note that below we can drop the leading terms of f ang g for the
[1206]55 ;; purpose of polynomial arithmetic.
56 ;;
[1212]57 ;; TODO: Make sure that the sugar calculation is correct if leading
58 ;; terms are dropped.
[4049]59 (subtract
[4070]60 (multiply f c2)
[4106]61 (multiply g m c1)))
[59]62
[4121]63(defun check-loop-invariant (c f a fl r p &aux (p-zero (make-zero-for f)))
[1238]64 "Check loop invariant of division algorithms, when we divide a
65polynomial F by the list of polynomials FL. The invariant is the
[1242]66identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]67the list of partial quotients, R is the intermediate value of the
[1242]68remainder, and P is the intermediate value which eventually becomes
[4122]690."
[1413]70 #|
71 (format t "~&----------------------------------------------------------------~%")
72 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]73 c f a fl r p)
[1413]74 |#
[4065]75 (let* ((prod (inner-product a fl add multiply p-zero))
[4070]76 (succeeded-p (universal-zerop (subtract (multiply f c) (add prod r p)))))
[4049]77 (unless succeeded-p
78 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
79 c f a fl r p))
80 succeeded-p))
[1237]81
82
[4049]83(defun poly-pseudo-divide (f fl)
[59]84 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
85multiple values. The first value is a list of quotients A. The second
86value is the remainder R. The third argument is a scalar coefficient
87C, such that C*F can be divided by FL within the ring of coefficients,
88which is not necessarily a field. Finally, the fourth value is an
89integer count of the number of reductions performed. The resulting
[1220]90objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]91the quotients is initialized to default."
[59]92 (declare (type poly f) (list fl))
[1241]93 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[4054]94 (do ((r (make-zero-for f))
[4310]95 (c (make-unit-for (leading-coefficient f)))
[4054]96 (a (make-list (length fl) :initial-element (make-zero-for f)))
[59]97 (division-count 0)
98 (p f))
[4049]99 ((universal-zerop p)
100 #+grobner-check(check-loop-invariant c f a fl r p)
[59]101 (debug-cgb "~&~3T~d reduction~:p" division-count)
[4049]102 (when (universal-zerop r) (debug-cgb " ---> 0"))
[1210]103 (values a r c division-count))
[59]104 (declare (fixnum division-count))
[1252]105 ;; Check the loop invariant here
[4049]106 #+grobner-check(check-loop-invariant c f a fl r p)
[1207]107 (do ((fl fl (rest fl)) ;scan list of divisors
[59]108 (b a (rest b)))
109 ((cond
[1207]110 ((endp fl) ;no division occurred
[4102]111 (setf r (add-to r (leading-term p)) ;move lt(p) to remainder
112 p (subtract-from p (leading-term p))) ;remove lt(p) from p
[1207]113 t)
[4055]114 ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
[1207]115 (incf division-count)
116 (multiple-value-bind (gcd c1 c2)
[4049]117 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
[1207]118 (declare (ignore gcd))
[4049]119 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
[1207]120 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
121 (mapl #'(lambda (x)
[4102]122 (setf (car x) (multiply-by (car x) c1)))
[1207]123 a)
[4109]124 (setf r (multiply-by r c1)
125 c (multiply-by c c1)
[4113]126 p (grobner-op c2 c1 m p (car fl)))
[4089]127 (setf (car b) (add (car b)
128 (change-class m 'term :coeff c2))))
[1248]129 t))))
130 )))
[59]131
[4049]132(defun poly-exact-divide (f g)
[59]133 "Divide a polynomial F by another polynomial G. Assume that exact division
134with no remainder is possible. Returns the quotient."
[4049]135 (declare (type poly f g))
[59]136 (multiple-value-bind (quot rem coeff division-count)
[4049]137 (poly-pseudo-divide f (list g))
[59]138 (declare (ignore division-count coeff)
139 (list quot)
140 (type poly rem)
141 (type fixnum division-count))
[4049]142 (unless (universal-zerop rem) (error "Exact division failed."))
[59]143 (car quot)))
144
145;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
146;;
147;; An implementation of the normal form
148;;
149;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
150
[4049]151(defun normal-form-step (fl p r c division-count
[1180]152 &aux
[4107]153 (g (find (leading-monomial p) fl
[4051]154 :test #'divisible-by-p
[4049]155 :key #'leading-monomial)))
[59]156 (cond
157 (g ;division possible
158 (incf division-count)
159 (multiple-value-bind (gcd cg cp)
[4049]160 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
[59]161 (declare (ignore gcd))
[4049]162 (let ((m (divide (leading-monomial p) (leading-monomial g))))
[59]163 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
[4171]164 (setf r (multiply-by r cg)
165 c (multiply-by c cg)
[59]166 ;; p := cg*p-cp*m*g
[4049]167 p (grobner-op cp cg m p g))))
[59]168 (debug-cgb "/"))
169 (t ;no division possible
[4102]170 (setf r (add-to r (leading-term p))) ;move lt(p) to remainder
171 (setf p (subtract-from p (leading-term p))) ;move lt(p) to remainder
[59]172 (debug-cgb "+")))
173 (values p r c division-count))
174
[1432]175;;
[1433]176;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
[1432]177;;
[1433]178;; TODO: It is hard to test normal form as there is no loop invariant,
179;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
180;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
181;;
[4209]182(defun normal-form (f fl &optional (top-reduction-only $poly_top_reduction_only))
[1568]183 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
[4207]184 (when (universal-zerop f)
185 #+grobner-check(when (null fl) (warn "normal-form: Dividend is zero."))
186 ;; NOTE: When the polynomial F is zero, we cannot constuct the
187 ;; unit in the coefficient field.
188 (return-from normal-form (values f nil 0)))
[4054]189 (do ((r (make-zero-for f))
[4206]190 (c (make-unit-for (leading-coefficient f)))
[1254]191 (division-count 0))
[4049]192 ((or (universal-zerop f)
[59]193 ;;(endp fl)
[4049]194 (and top-reduction-only (not (universal-zerop r))))
[59]195 (progn
[1239]196 (debug-cgb "~&~3T~D reduction~:P" division-count)
[4049]197 (when (universal-zerop r)
[59]198 (debug-cgb " ---> 0")))
[4206]199 (setf f (add-to f r))
[59]200 (values f c division-count))
201 (declare (fixnum division-count)
202 (type poly r))
203 (multiple-value-setq (f r c division-count)
[4049]204 (normal-form-step fl f r c division-count))))
[59]205
[4050]206(defun buchberger-criterion (g)
[59]207 "Returns T if G is a Grobner basis, by using the Buchberger
208criterion: for every two polynomials h1 and h2 in G the S-polynomial
209S(h1,h2) reduces to 0 modulo G."
[4051]210 (every #'universal-zerop
[4102]211 (makelist (normal-form (s-polynomial (elt g i) (elt g j)) g nil)
[1222]212 (i 0 (- (length g) 2))
213 (j (1+ i) (1- (length g))))))
[59]214
[64]215
[4051]216(defun poly-normalize (p &aux (c (leading-coefficient p)))
[64]217 "Divide a polynomial by its leading coefficient. It assumes
218that the division is possible, which may not always be the
219case in rings which are not fields. The exact division operator
[1197]220is assumed to be provided by the RING structure."
[64]221 (mapc #'(lambda (term)
[4051]222 (setf (term-coeff term) (divide (term-coeff term) c)))
[64]223 (poly-termlist p))
224 p)
225
[4051]226(defun poly-normalize-list (plist)
[64]227 "Divide every polynomial in a list PLIST by its leading coefficient. "
[4051]228 (mapcar #'(lambda (x) (poly-normalize x)) plist))
[1297]229
[4051]230(defun grobner-test (g f)
[1297]231 "Test whether G is a Grobner basis and F is contained in G. Return T
[4211]232upon success and NIL otherwise. The function GROBNER-TEST is provided
233primarily for debugging purposes. To enable verification of grobner
234bases with BUCHBERGER-CRITERION, do
[4210]235(pushnew :grobner-check *features*) and compile/load this file. With
236this feature, the calculations will slow down CONSIDERABLY."
[1297]237 (debug-cgb "~&GROBNER CHECK: ")
238 (let (($poly_grobner_debug nil)
[4051]239 (stat1 (buchberger-criterion g))
[1297]240 (stat2
[4199]241 (every #'universal-zerop
242 (makelist (normal-form (copy-instance (elt f i)) g nil)
243 (i 0 (1- (length f)))))))
[4200]244 (unless stat1
245 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]246 (unless stat2
[1406]247 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]248 (debug-cgb "~&GROBNER CHECK END")
249 t)
Note: See TracBrowser for help on using the repository browser.