| [1199] | 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| [148] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 3 | ;;; | 
|---|
|  | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 5 | ;;; | 
|---|
|  | 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 9 | ;;;  (at your option) any later version. | 
|---|
|  | 10 | ;;; | 
|---|
|  | 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | ;;;  GNU General Public License for more details. | 
|---|
|  | 15 | ;;; | 
|---|
|  | 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 19 | ;;; | 
|---|
|  | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 21 |  | 
|---|
| [459] | 22 | (defpackage "DIVISION" | 
|---|
| [4087] | 23 | (:use :cl :copy :utils :monom :polynomial :grobner-debug :symbolic-polynomial) | 
|---|
| [470] | 24 | (:export "$POLY_TOP_REDUCTION_ONLY" | 
|---|
|  | 25 | "POLY-PSEUDO-DIVIDE" | 
|---|
| [459] | 26 | "POLY-EXACT-DIVIDE" | 
|---|
| [491] | 27 | "NORMAL-FORM-STEP" | 
|---|
| [459] | 28 | "NORMAL-FORM" | 
|---|
|  | 29 | "POLY-NORMALIZE" | 
|---|
| [472] | 30 | "POLY-NORMALIZE-LIST" | 
|---|
| [473] | 31 | "BUCHBERGER-CRITERION" | 
|---|
| [1299] | 32 | "GROBNER-TEST" | 
|---|
| [4077] | 33 | ) | 
|---|
|  | 34 | (:documentation | 
|---|
| [4079] | 35 | "An implementation of the division algorithm in the polynomial ring.")) | 
|---|
| [148] | 36 |  | 
|---|
| [460] | 37 | (in-package :division) | 
|---|
|  | 38 |  | 
|---|
| [469] | 39 | (defvar $poly_top_reduction_only nil | 
|---|
|  | 40 | "If not FALSE, use top reduction only whenever possible. | 
|---|
|  | 41 | Top reduction means that division algorithm stops after the first reduction.") | 
|---|
|  | 42 |  | 
|---|
| [59] | 43 |  | 
|---|
| [4048] | 44 | (defun grobner-op (c1 c2 m f g) | 
|---|
| [59] | 45 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial. | 
|---|
|  | 46 | Assume that the leading terms will cancel." | 
|---|
| [4051] | 47 | (declare (type monom m) | 
|---|
| [1965] | 48 | (type poly f g)) | 
|---|
| [4048] | 49 | #+grobner-check(universal-zerop | 
|---|
|  | 50 | (subtract | 
|---|
|  | 51 | (multiply c2 (leading-coefficient f)) | 
|---|
|  | 52 | (multiply c1 (leading-coefficient g)))) | 
|---|
| [4049] | 53 | #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g))) | 
|---|
| [1205] | 54 | ;; Note that below we can drop the leading terms of f ang g for the | 
|---|
| [1206] | 55 | ;; purpose of polynomial arithmetic. | 
|---|
|  | 56 | ;; | 
|---|
| [1212] | 57 | ;; TODO: Make sure that the sugar calculation is correct if leading | 
|---|
|  | 58 | ;; terms are dropped. | 
|---|
| [4049] | 59 | (subtract | 
|---|
| [4070] | 60 | (multiply f c2) | 
|---|
| [4106] | 61 | (multiply g m c1))) | 
|---|
| [59] | 62 |  | 
|---|
| [4121] | 63 | (defun check-loop-invariant (c f a fl r p &aux (p-zero (make-zero-for f))) | 
|---|
| [1238] | 64 | "Check loop invariant of division algorithms, when we divide a | 
|---|
|  | 65 | polynomial F by the list of polynomials FL. The invariant is the | 
|---|
| [1242] | 66 | identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is | 
|---|
| [1238] | 67 | the list of partial quotients, R is the intermediate value of the | 
|---|
| [1242] | 68 | remainder, and P is the intermediate value which eventually becomes | 
|---|
| [4122] | 69 | 0." | 
|---|
| [1413] | 70 | #| | 
|---|
|  | 71 | (format t "~&----------------------------------------------------------------~%") | 
|---|
|  | 72 | (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
| [1275] | 73 | c f a fl r p) | 
|---|
| [1413] | 74 | |# | 
|---|
| [4065] | 75 | (let* ((prod (inner-product a fl add multiply p-zero)) | 
|---|
| [4070] | 76 | (succeeded-p (universal-zerop (subtract (multiply f c) (add prod r p))))) | 
|---|
| [4049] | 77 | (unless succeeded-p | 
|---|
|  | 78 | (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
|  | 79 | c f a fl r p)) | 
|---|
|  | 80 | succeeded-p)) | 
|---|
| [1237] | 81 |  | 
|---|
|  | 82 |  | 
|---|
| [4049] | 83 | (defun poly-pseudo-divide (f fl) | 
|---|
| [59] | 84 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return | 
|---|
|  | 85 | multiple values. The first value is a list of quotients A.  The second | 
|---|
|  | 86 | value is the remainder R. The third argument is a scalar coefficient | 
|---|
|  | 87 | C, such that C*F can be divided by FL within the ring of coefficients, | 
|---|
|  | 88 | which is not necessarily a field. Finally, the fourth value is an | 
|---|
|  | 89 | integer count of the number of reductions performed.  The resulting | 
|---|
| [1220] | 90 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of | 
|---|
| [1221] | 91 | the quotients is initialized to default." | 
|---|
| [59] | 92 | (declare (type poly f) (list fl)) | 
|---|
| [1241] | 93 | ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0 | 
|---|
| [4054] | 94 | (do ((r (make-zero-for f)) | 
|---|
| [4074] | 95 | (c 1) | 
|---|
| [4054] | 96 | (a (make-list (length fl) :initial-element (make-zero-for f))) | 
|---|
| [59] | 97 | (division-count 0) | 
|---|
|  | 98 | (p f)) | 
|---|
| [4049] | 99 | ((universal-zerop p) | 
|---|
|  | 100 | #+grobner-check(check-loop-invariant c f a fl r p) | 
|---|
| [59] | 101 | (debug-cgb "~&~3T~d reduction~:p" division-count) | 
|---|
| [4049] | 102 | (when (universal-zerop r) (debug-cgb " ---> 0")) | 
|---|
| [1210] | 103 | (values a r c division-count)) | 
|---|
| [59] | 104 | (declare (fixnum division-count)) | 
|---|
| [1252] | 105 | ;; Check the loop invariant here | 
|---|
| [4049] | 106 | #+grobner-check(check-loop-invariant c f a fl r p) | 
|---|
| [1207] | 107 | (do ((fl fl (rest fl))              ;scan list of divisors | 
|---|
| [59] | 108 | (b a (rest b))) | 
|---|
|  | 109 | ((cond | 
|---|
| [1207] | 110 | ((endp fl)                           ;no division occurred | 
|---|
| [4102] | 111 | (setf r (add-to r (leading-term p)) ;move lt(p) to remainder | 
|---|
|  | 112 | p (subtract-from p (leading-term p))) ;remove lt(p) from p | 
|---|
| [1207] | 113 | t) | 
|---|
| [4055] | 114 | ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred | 
|---|
| [1207] | 115 | (incf division-count) | 
|---|
|  | 116 | (multiple-value-bind (gcd c1 c2) | 
|---|
| [4049] | 117 | (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p)) | 
|---|
| [1207] | 118 | (declare (ignore gcd)) | 
|---|
| [4049] | 119 | (let ((m (divide (leading-monomial p) (leading-monomial (car fl))))) | 
|---|
| [1207] | 120 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1. | 
|---|
|  | 121 | (mapl #'(lambda (x) | 
|---|
| [4102] | 122 | (setf (car x) (multiply-by (car x) c1))) | 
|---|
| [1207] | 123 | a) | 
|---|
| [4109] | 124 | (setf r (multiply-by r c1) | 
|---|
|  | 125 | c (multiply-by c c1) | 
|---|
| [4113] | 126 | p (grobner-op c2 c1 m p (car fl))) | 
|---|
| [4089] | 127 | (setf (car b) (add (car b) | 
|---|
|  | 128 | (change-class m 'term :coeff c2)))) | 
|---|
| [1248] | 129 | t)))) | 
|---|
|  | 130 | ))) | 
|---|
| [59] | 131 |  | 
|---|
| [4049] | 132 | (defun poly-exact-divide (f g) | 
|---|
| [59] | 133 | "Divide a polynomial F by another polynomial G. Assume that exact division | 
|---|
|  | 134 | with no remainder is possible. Returns the quotient." | 
|---|
| [4049] | 135 | (declare (type poly f g)) | 
|---|
| [59] | 136 | (multiple-value-bind (quot rem coeff division-count) | 
|---|
| [4049] | 137 | (poly-pseudo-divide f (list g)) | 
|---|
| [59] | 138 | (declare (ignore division-count coeff) | 
|---|
|  | 139 | (list quot) | 
|---|
|  | 140 | (type poly rem) | 
|---|
|  | 141 | (type fixnum division-count)) | 
|---|
| [4049] | 142 | (unless (universal-zerop rem) (error "Exact division failed.")) | 
|---|
| [59] | 143 | (car quot))) | 
|---|
|  | 144 |  | 
|---|
|  | 145 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 146 | ;; | 
|---|
|  | 147 | ;; An implementation of the normal form | 
|---|
|  | 148 | ;; | 
|---|
|  | 149 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 150 |  | 
|---|
| [4049] | 151 | (defun normal-form-step (fl p r c division-count | 
|---|
| [1180] | 152 | &aux | 
|---|
| [4107] | 153 | (g (find (leading-monomial p) fl | 
|---|
| [4051] | 154 | :test #'divisible-by-p | 
|---|
| [4049] | 155 | :key #'leading-monomial))) | 
|---|
| [59] | 156 | (cond | 
|---|
|  | 157 | (g                                   ;division possible | 
|---|
|  | 158 | (incf division-count) | 
|---|
|  | 159 | (multiple-value-bind (gcd cg cp) | 
|---|
| [4049] | 160 | (universal-ezgcd (leading-coefficient g) (leading-coefficient p)) | 
|---|
| [59] | 161 | (declare (ignore gcd)) | 
|---|
| [4049] | 162 | (let ((m (divide (leading-monomial p) (leading-monomial g)))) | 
|---|
| [59] | 163 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg. | 
|---|
| [4171] | 164 | (setf r (multiply-by r cg) | 
|---|
|  | 165 | c (multiply-by c cg) | 
|---|
| [59] | 166 | ;; p := cg*p-cp*m*g | 
|---|
| [4049] | 167 | p (grobner-op cp cg m p g)))) | 
|---|
| [59] | 168 | (debug-cgb "/")) | 
|---|
|  | 169 | (t                                                   ;no division possible | 
|---|
| [4102] | 170 | (setf r (add-to r (leading-term p))) ;move lt(p) to remainder | 
|---|
|  | 171 | (setf p (subtract-from p (leading-term p))) ;move lt(p) to remainder | 
|---|
| [59] | 172 | (debug-cgb "+"))) | 
|---|
|  | 173 | (values p r c division-count)) | 
|---|
|  | 174 |  | 
|---|
| [1432] | 175 | ;; | 
|---|
| [1433] | 176 | ;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE. | 
|---|
| [1432] | 177 | ;; | 
|---|
| [1433] | 178 | ;; TODO: It is hard to test normal form as there is no loop invariant, | 
|---|
|  | 179 | ;; like for POLY-PSEUDO-DIVIDE.  Is there a testing strategy? One | 
|---|
|  | 180 | ;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE. | 
|---|
|  | 181 | ;; | 
|---|
| [4208] | 182 | (defun normal-form (f fl &optional (top-reduction-only nil)) | 
|---|
| [1568] | 183 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list.")) | 
|---|
| [4207] | 184 | (when (universal-zerop f) | 
|---|
|  | 185 | #+grobner-check(when (null fl) (warn "normal-form: Dividend is zero.")) | 
|---|
|  | 186 | ;; NOTE: When the polynomial F is zero, we cannot constuct the | 
|---|
|  | 187 | ;; unit in the coefficient field. | 
|---|
|  | 188 | (return-from normal-form (values f nil 0))) | 
|---|
| [4054] | 189 | (do ((r (make-zero-for f)) | 
|---|
| [4206] | 190 | (c (make-unit-for (leading-coefficient f))) | 
|---|
| [1254] | 191 | (division-count 0)) | 
|---|
| [4049] | 192 | ((or (universal-zerop f) | 
|---|
| [59] | 193 | ;;(endp fl) | 
|---|
| [4049] | 194 | (and top-reduction-only (not (universal-zerop r)))) | 
|---|
| [59] | 195 | (progn | 
|---|
| [1239] | 196 | (debug-cgb "~&~3T~D reduction~:P" division-count) | 
|---|
| [4049] | 197 | (when (universal-zerop r) | 
|---|
| [59] | 198 | (debug-cgb " ---> 0"))) | 
|---|
| [4206] | 199 | (setf f (add-to f r)) | 
|---|
| [59] | 200 | (values f c division-count)) | 
|---|
|  | 201 | (declare (fixnum division-count) | 
|---|
|  | 202 | (type poly r)) | 
|---|
|  | 203 | (multiple-value-setq (f r c division-count) | 
|---|
| [4049] | 204 | (normal-form-step fl f r c division-count)))) | 
|---|
| [59] | 205 |  | 
|---|
| [4050] | 206 | (defun buchberger-criterion (g) | 
|---|
| [59] | 207 | "Returns T if G is a Grobner basis, by using the Buchberger | 
|---|
|  | 208 | criterion: for every two polynomials h1 and h2 in G the S-polynomial | 
|---|
|  | 209 | S(h1,h2) reduces to 0 modulo G." | 
|---|
| [4051] | 210 | (every #'universal-zerop | 
|---|
| [4102] | 211 | (makelist (normal-form (s-polynomial (elt g i) (elt g j)) g nil) | 
|---|
| [1222] | 212 | (i 0 (- (length g) 2)) | 
|---|
|  | 213 | (j (1+ i) (1- (length g)))))) | 
|---|
| [59] | 214 |  | 
|---|
| [64] | 215 |  | 
|---|
| [4051] | 216 | (defun poly-normalize (p &aux (c (leading-coefficient p))) | 
|---|
| [64] | 217 | "Divide a polynomial by its leading coefficient. It assumes | 
|---|
|  | 218 | that the division is possible, which may not always be the | 
|---|
|  | 219 | case in rings which are not fields. The exact division operator | 
|---|
| [1197] | 220 | is assumed to be provided by the RING structure." | 
|---|
| [64] | 221 | (mapc #'(lambda (term) | 
|---|
| [4051] | 222 | (setf (term-coeff term) (divide (term-coeff term) c))) | 
|---|
| [64] | 223 | (poly-termlist p)) | 
|---|
|  | 224 | p) | 
|---|
|  | 225 |  | 
|---|
| [4051] | 226 | (defun poly-normalize-list (plist) | 
|---|
| [64] | 227 | "Divide every polynomial in a list PLIST by its leading coefficient. " | 
|---|
| [4051] | 228 | (mapcar #'(lambda (x) (poly-normalize x)) plist)) | 
|---|
| [1297] | 229 |  | 
|---|
|  | 230 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 231 | ;; | 
|---|
| [4056] | 232 | ;; The function GROBNER-TEST is provided primarily for debugging purposes. To | 
|---|
| [1297] | 233 | ;; enable verification of grobner bases with BUCHBERGER-CRITERION, do | 
|---|
|  | 234 | ;; (pushnew :grobner-check *features*) and compile/load this file. | 
|---|
|  | 235 | ;; With this feature, the calculations will slow down CONSIDERABLY. | 
|---|
|  | 236 | ;; | 
|---|
|  | 237 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 238 |  | 
|---|
| [4051] | 239 | (defun grobner-test (g f) | 
|---|
| [1297] | 240 | "Test whether G is a Grobner basis and F is contained in G. Return T | 
|---|
|  | 241 | upon success and NIL otherwise." | 
|---|
|  | 242 | (debug-cgb "~&GROBNER CHECK: ") | 
|---|
|  | 243 | (let (($poly_grobner_debug nil) | 
|---|
| [4051] | 244 | (stat1 (buchberger-criterion g)) | 
|---|
| [1297] | 245 | (stat2 | 
|---|
| [4199] | 246 | (every #'universal-zerop | 
|---|
|  | 247 | (makelist (normal-form (copy-instance (elt f i)) g nil) | 
|---|
|  | 248 | (i 0 (1- (length f))))))) | 
|---|
| [4200] | 249 | (unless stat1 | 
|---|
|  | 250 | (error "~&Buchberger criterion failed, not a grobner basis: ~A" g)) | 
|---|
| [1297] | 251 | (unless stat2 | 
|---|
| [1406] | 252 | (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f))) | 
|---|
| [1297] | 253 | (debug-cgb "~&GROBNER CHECK END") | 
|---|
|  | 254 | t) | 
|---|