close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4100

Last change on this file since 4100 was 4089, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 10.6 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[4087]23 (:use :cl :copy :utils :monom :polynomial :grobner-debug :symbolic-polynomial)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[4077]33 )
34 (:documentation
[4079]35 "An implementation of the division algorithm in the polynomial ring."))
[148]36
[460]37(in-package :division)
38
[469]39(defvar $poly_top_reduction_only nil
40 "If not FALSE, use top reduction only whenever possible.
41Top reduction means that division algorithm stops after the first reduction.")
42
[59]43
[4048]44(defun grobner-op (c1 c2 m f g)
[59]45 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
46Assume that the leading terms will cancel."
[4051]47 (declare (type monom m)
[1965]48 (type poly f g))
[4048]49 #+grobner-check(universal-zerop
50 (subtract
51 (multiply c2 (leading-coefficient f))
52 (multiply c1 (leading-coefficient g))))
[4049]53 #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g)))
[1205]54 ;; Note that below we can drop the leading terms of f ang g for the
[1206]55 ;; purpose of polynomial arithmetic.
56 ;;
[1212]57 ;; TODO: Make sure that the sugar calculation is correct if leading
58 ;; terms are dropped.
[4049]59 (subtract
[4070]60 (multiply f c2)
[4072]61 (multiply m g c1)))
[59]62
[4049]63(defun check-loop-invariant (c f a fl r p
[1237]64 &aux
[4064]65 (p-zero (make-zero-for f))
[1264]66 (a (mapcar #'poly-reverse a))
67 (r (poly-reverse r)))
[1238]68 "Check loop invariant of division algorithms, when we divide a
69polynomial F by the list of polynomials FL. The invariant is the
[1242]70identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]71the list of partial quotients, R is the intermediate value of the
[1242]72remainder, and P is the intermediate value which eventually becomes
[1269]730. A thing to remember is that the terms of polynomials in A and
74the polynomial R have their terms in reversed order. Hence, before
75the arithmetic is performed, we need to fix the order of terms"
[1413]76 #|
77 (format t "~&----------------------------------------------------------------~%")
78 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]79 c f a fl r p)
[1413]80 |#
[4065]81 (let* ((prod (inner-product a fl add multiply p-zero))
[4070]82 (succeeded-p (universal-zerop (subtract (multiply f c) (add prod r p)))))
[4049]83 (unless succeeded-p
84 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
85 c f a fl r p))
86 succeeded-p))
[1237]87
88
[4049]89(defun poly-pseudo-divide (f fl)
[59]90 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
91multiple values. The first value is a list of quotients A. The second
92value is the remainder R. The third argument is a scalar coefficient
93C, such that C*F can be divided by FL within the ring of coefficients,
94which is not necessarily a field. Finally, the fourth value is an
95integer count of the number of reductions performed. The resulting
[1220]96objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]97the quotients is initialized to default."
[59]98 (declare (type poly f) (list fl))
[1241]99 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[4054]100 (do ((r (make-zero-for f))
[4074]101 (c 1)
[4054]102 (a (make-list (length fl) :initial-element (make-zero-for f)))
[59]103 (division-count 0)
104 (p f))
[4049]105 ((universal-zerop p)
106 #+grobner-check(check-loop-invariant c f a fl r p)
[59]107 (debug-cgb "~&~3T~d reduction~:p" division-count)
[4049]108 (when (universal-zerop r) (debug-cgb " ---> 0"))
[1211]109 ;; We obtained the terms in reverse order, so must fix that
[4070]110 (setf a (mapcar #'poly-reverse a)
111 r (poly-reverse r))
[1210]112 (values a r c division-count))
[59]113 (declare (fixnum division-count))
[1252]114 ;; Check the loop invariant here
[4049]115 #+grobner-check(check-loop-invariant c f a fl r p)
[1207]116 (do ((fl fl (rest fl)) ;scan list of divisors
[59]117 (b a (rest b)))
118 ((cond
[1207]119 ((endp fl) ;no division occurred
120 t)
[4055]121 ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
[1207]122 (incf division-count)
123 (multiple-value-bind (gcd c1 c2)
[4049]124 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
[1207]125 (declare (ignore gcd))
[4049]126 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
[1207]127 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
128 (mapl #'(lambda (x)
[4070]129 (setf (car x) (multiply (car x) c1)))
[1207]130 a)
[4070]131 (setf r (multiply r c1)
[4049]132 c (multiply c c1)
133 p (grobner-op c2 c1 m p (car fl)))
[4089]134 (setf (car b) (add (car b)
135 (change-class m 'term :coeff c2))))
[1248]136 t))))
137 )))
[59]138
[4049]139(defun poly-exact-divide (f g)
[59]140 "Divide a polynomial F by another polynomial G. Assume that exact division
141with no remainder is possible. Returns the quotient."
[4049]142 (declare (type poly f g))
[59]143 (multiple-value-bind (quot rem coeff division-count)
[4049]144 (poly-pseudo-divide f (list g))
[59]145 (declare (ignore division-count coeff)
146 (list quot)
147 (type poly rem)
148 (type fixnum division-count))
[4049]149 (unless (universal-zerop rem) (error "Exact division failed."))
[59]150 (car quot)))
151
152;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
153;;
154;; An implementation of the normal form
155;;
156;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
157
[4049]158(defun normal-form-step (fl p r c division-count
[1180]159 &aux
[4049]160 (g (find (leading-monomial p) fl
[4051]161 :test #'divisible-by-p
[4049]162 :key #'leading-monomial)))
[59]163 (cond
164 (g ;division possible
165 (incf division-count)
166 (multiple-value-bind (gcd cg cp)
[4049]167 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
[59]168 (declare (ignore gcd))
[4049]169 (let ((m (divide (leading-monomial p) (leading-monomial g))))
[59]170 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
[4070]171 (setf r (multiply r cg)
[4049]172 c (multiply c cg)
[59]173 ;; p := cg*p-cp*m*g
[4049]174 p (grobner-op cp cg m p g))))
[59]175 (debug-cgb "/"))
176 (t ;no division possible
[4049]177 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
178 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
[59]179 (pop (poly-termlist p)) ;remove lt(p) from p
180 (debug-cgb "+")))
181 (values p r c division-count))
182
[1432]183;;
[1433]184;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
[1432]185;;
[1433]186;; TODO: It is hard to test normal form as there is no loop invariant,
187;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
188;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
189;;
[4049]190(defun normal-form (f fl
191 &optional
192 (top-reduction-only $poly_top_reduction_only))
[1568]193 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
[4054]194 (do ((r (make-zero-for f))
[4075]195 (c 1)
[1254]196 (division-count 0))
[4049]197 ((or (universal-zerop f)
[59]198 ;;(endp fl)
[4049]199 (and top-reduction-only (not (universal-zerop r))))
[59]200 (progn
[1239]201 (debug-cgb "~&~3T~D reduction~:P" division-count)
[4049]202 (when (universal-zerop r)
[59]203 (debug-cgb " ---> 0")))
204 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
205 (values f c division-count))
206 (declare (fixnum division-count)
207 (type poly r))
208 (multiple-value-setq (f r c division-count)
[4049]209 (normal-form-step fl f r c division-count))))
[59]210
[4051]211(defun spoly (f g)
212 "It yields the S-polynomial of polynomials F and G."
213 (declare (type poly f g))
214 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
215 (mf (divide lcm (leading-monomial f)))
216 (mg (divide lcm (leading-monomial g))))
217 (declare (type monom mf mg))
218 (multiple-value-bind (c cf cg)
219 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
220 (declare (ignore c))
[4052]221 (subtract
[4070]222 (multiply (multiply mf f) cg)
223 (multiply (multiply mg g) cf)))))
[4051]224
[4050]225(defun buchberger-criterion (g)
[59]226 "Returns T if G is a Grobner basis, by using the Buchberger
227criterion: for every two polynomials h1 and h2 in G the S-polynomial
228S(h1,h2) reduces to 0 modulo G."
[4051]229 (every #'universal-zerop
230 (makelist (normal-form (spoly (elt g i) (elt g j)) g nil)
[1222]231 (i 0 (- (length g) 2))
232 (j (1+ i) (1- (length g))))))
[59]233
[64]234
[4051]235(defun poly-normalize (p &aux (c (leading-coefficient p)))
[64]236 "Divide a polynomial by its leading coefficient. It assumes
237that the division is possible, which may not always be the
238case in rings which are not fields. The exact division operator
[1197]239is assumed to be provided by the RING structure."
[64]240 (mapc #'(lambda (term)
[4051]241 (setf (term-coeff term) (divide (term-coeff term) c)))
[64]242 (poly-termlist p))
243 p)
244
[4051]245(defun poly-normalize-list (plist)
[64]246 "Divide every polynomial in a list PLIST by its leading coefficient. "
[4051]247 (mapcar #'(lambda (x) (poly-normalize x)) plist))
[1297]248
249;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
250;;
[4056]251;; The function GROBNER-TEST is provided primarily for debugging purposes. To
[1297]252;; enable verification of grobner bases with BUCHBERGER-CRITERION, do
253;; (pushnew :grobner-check *features*) and compile/load this file.
254;; With this feature, the calculations will slow down CONSIDERABLY.
255;;
256;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
257
[4051]258(defun grobner-test (g f)
[1297]259 "Test whether G is a Grobner basis and F is contained in G. Return T
260upon success and NIL otherwise."
261 (debug-cgb "~&GROBNER CHECK: ")
262 (let (($poly_grobner_debug nil)
[4051]263 (stat1 (buchberger-criterion g))
[1297]264 (stat2
[4051]265 (every #'universal-zerop
[4082]266 (makelist (normal-form (copy-instance (elt f i)) g nil)
[1297]267 (i 0 (1- (length f)))))))
[1404]268 (unless stat1 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]269 (unless stat2
[1406]270 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]271 (debug-cgb "~&GROBNER CHECK END")
272 t)
Note: See TracBrowser for help on using the repository browser.