close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4071

Last change on this file since 4071 was 4070, checked in by Marek Rychlik, 8 years ago

* empty log message *

File size: 11.0 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[4049]23 (:use :cl :utils :monom :polynomial :grobner-debug)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[459]33 ))
[148]34
[460]35(in-package :division)
36
[469]37(defvar $poly_top_reduction_only nil
38 "If not FALSE, use top reduction only whenever possible.
39Top reduction means that division algorithm stops after the first reduction.")
40
[59]41;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
42;;
43;; An implementation of the division algorithm
44;;
45;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
46
[4048]47(defun grobner-op (c1 c2 m f g)
[59]48 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
49Assume that the leading terms will cancel."
[4051]50 (declare (type monom m)
[1965]51 (type poly f g))
[4048]52 #+grobner-check(universal-zerop
53 (subtract
54 (multiply c2 (leading-coefficient f))
55 (multiply c1 (leading-coefficient g))))
[4049]56 #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g)))
[1205]57 ;; Note that below we can drop the leading terms of f ang g for the
[1206]58 ;; purpose of polynomial arithmetic.
59 ;;
[1212]60 ;; TODO: Make sure that the sugar calculation is correct if leading
61 ;; terms are dropped.
[4049]62 (subtract
[4070]63 (multiply f c2)
64 (multiply (multiply m g) c1)))
[59]65
[4049]66(defun check-loop-invariant (c f a fl r p
[1237]67 &aux
[4064]68 (p-zero (make-zero-for f))
[1264]69 (a (mapcar #'poly-reverse a))
70 (r (poly-reverse r)))
[1238]71 "Check loop invariant of division algorithms, when we divide a
72polynomial F by the list of polynomials FL. The invariant is the
[1242]73identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]74the list of partial quotients, R is the intermediate value of the
[1242]75remainder, and P is the intermediate value which eventually becomes
[1269]760. A thing to remember is that the terms of polynomials in A and
77the polynomial R have their terms in reversed order. Hence, before
78the arithmetic is performed, we need to fix the order of terms"
[1413]79 #|
80 (format t "~&----------------------------------------------------------------~%")
81 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]82 c f a fl r p)
[1413]83 |#
[4065]84 (let* ((prod (inner-product a fl add multiply p-zero))
[4070]85 (succeeded-p (universal-zerop (subtract (multiply f c) (add prod r p)))))
[4049]86 (unless succeeded-p
87 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
88 c f a fl r p))
89 succeeded-p))
[1237]90
91
[4049]92(defun poly-pseudo-divide (f fl)
[59]93 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
94multiple values. The first value is a list of quotients A. The second
95value is the remainder R. The third argument is a scalar coefficient
96C, such that C*F can be divided by FL within the ring of coefficients,
97which is not necessarily a field. Finally, the fourth value is an
98integer count of the number of reductions performed. The resulting
[1220]99objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]100the quotients is initialized to default."
[59]101 (declare (type poly f) (list fl))
[1241]102 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[4054]103 (do ((r (make-zero-for f))
104 (c (make-unit-for f))
105 (a (make-list (length fl) :initial-element (make-zero-for f)))
[59]106 (division-count 0)
107 (p f))
[4049]108 ((universal-zerop p)
109 #+grobner-check(check-loop-invariant c f a fl r p)
[59]110 (debug-cgb "~&~3T~d reduction~:p" division-count)
[4049]111 (when (universal-zerop r) (debug-cgb " ---> 0"))
[1211]112 ;; We obtained the terms in reverse order, so must fix that
[4070]113 (setf a (mapcar #'poly-reverse a)
114 r (poly-reverse r))
[1219]115 ;; Initialize the sugar of the quotients
[4049]116 ;; (mapc #'poly-reset-sugar a) ;; TODO: Sugar is currently unimplemented
[1210]117 (values a r c division-count))
[59]118 (declare (fixnum division-count))
[1252]119 ;; Check the loop invariant here
[4049]120 #+grobner-check(check-loop-invariant c f a fl r p)
[1207]121 (do ((fl fl (rest fl)) ;scan list of divisors
[59]122 (b a (rest b)))
123 ((cond
[1207]124 ((endp fl) ;no division occurred
[4049]125 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
126 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
[1207]127 (pop (poly-termlist p)) ;remove lt(p) from p
128 t)
[4055]129 ((divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
[1207]130 (incf division-count)
131 (multiple-value-bind (gcd c1 c2)
[4049]132 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
[1207]133 (declare (ignore gcd))
[4049]134 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
[1207]135 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
136 (mapl #'(lambda (x)
[4070]137 (setf (car x) (multiply (car x) c1)))
[1207]138 a)
[4070]139 (setf r (multiply r c1)
[4049]140 c (multiply c c1)
141 p (grobner-op c2 c1 m p (car fl)))
[4070]142 (push (change-class m 'term :coeff c2)
143 (poly-termlist (car b))))
[1248]144 t))))
145 )))
[59]146
[4049]147(defun poly-exact-divide (f g)
[59]148 "Divide a polynomial F by another polynomial G. Assume that exact division
149with no remainder is possible. Returns the quotient."
[4049]150 (declare (type poly f g))
[59]151 (multiple-value-bind (quot rem coeff division-count)
[4049]152 (poly-pseudo-divide f (list g))
[59]153 (declare (ignore division-count coeff)
154 (list quot)
155 (type poly rem)
156 (type fixnum division-count))
[4049]157 (unless (universal-zerop rem) (error "Exact division failed."))
[59]158 (car quot)))
159
160;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
161;;
162;; An implementation of the normal form
163;;
164;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
165
[4049]166(defun normal-form-step (fl p r c division-count
[1180]167 &aux
[4049]168 (g (find (leading-monomial p) fl
[4051]169 :test #'divisible-by-p
[4049]170 :key #'leading-monomial)))
[59]171 (cond
172 (g ;division possible
173 (incf division-count)
174 (multiple-value-bind (gcd cg cp)
[4049]175 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
[59]176 (declare (ignore gcd))
[4049]177 (let ((m (divide (leading-monomial p) (leading-monomial g))))
[59]178 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
[4070]179 (setf r (multiply r cg)
[4049]180 c (multiply c cg)
[59]181 ;; p := cg*p-cp*m*g
[4049]182 p (grobner-op cp cg m p g))))
[59]183 (debug-cgb "/"))
184 (t ;no division possible
[4049]185 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
186 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
[59]187 (pop (poly-termlist p)) ;remove lt(p) from p
188 (debug-cgb "+")))
189 (values p r c division-count))
190
[1432]191;;
[1433]192;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
[1432]193;;
[1433]194;; TODO: It is hard to test normal form as there is no loop invariant,
195;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
196;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
197;;
[4049]198(defun normal-form (f fl
199 &optional
200 (top-reduction-only $poly_top_reduction_only))
[1568]201 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
[4054]202 (do ((r (make-zero-for f))
203 (c (make-zero-for f))
[1254]204 (division-count 0))
[4049]205 ((or (universal-zerop f)
[59]206 ;;(endp fl)
[4049]207 (and top-reduction-only (not (universal-zerop r))))
[59]208 (progn
[1239]209 (debug-cgb "~&~3T~D reduction~:P" division-count)
[4049]210 (when (universal-zerop r)
[59]211 (debug-cgb " ---> 0")))
212 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
213 (values f c division-count))
214 (declare (fixnum division-count)
215 (type poly r))
216 (multiple-value-setq (f r c division-count)
[4049]217 (normal-form-step fl f r c division-count))))
[59]218
[4051]219(defun spoly (f g)
220 "It yields the S-polynomial of polynomials F and G."
221 (declare (type poly f g))
222 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
223 (mf (divide lcm (leading-monomial f)))
224 (mg (divide lcm (leading-monomial g))))
225 (declare (type monom mf mg))
226 (multiple-value-bind (c cf cg)
227 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
228 (declare (ignore c))
[4052]229 (subtract
[4070]230 (multiply (multiply mf f) cg)
231 (multiply (multiply mg g) cf)))))
[4051]232
[4050]233(defun buchberger-criterion (g)
[59]234 "Returns T if G is a Grobner basis, by using the Buchberger
235criterion: for every two polynomials h1 and h2 in G the S-polynomial
236S(h1,h2) reduces to 0 modulo G."
[4051]237 (every #'universal-zerop
238 (makelist (normal-form (spoly (elt g i) (elt g j)) g nil)
[1222]239 (i 0 (- (length g) 2))
240 (j (1+ i) (1- (length g))))))
[59]241
[64]242
[4051]243(defun poly-normalize (p &aux (c (leading-coefficient p)))
[64]244 "Divide a polynomial by its leading coefficient. It assumes
245that the division is possible, which may not always be the
246case in rings which are not fields. The exact division operator
[1197]247is assumed to be provided by the RING structure."
[64]248 (mapc #'(lambda (term)
[4051]249 (setf (term-coeff term) (divide (term-coeff term) c)))
[64]250 (poly-termlist p))
251 p)
252
[4051]253(defun poly-normalize-list (plist)
[64]254 "Divide every polynomial in a list PLIST by its leading coefficient. "
[4051]255 (mapcar #'(lambda (x) (poly-normalize x)) plist))
[1297]256
257;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
258;;
[4056]259;; The function GROBNER-TEST is provided primarily for debugging purposes. To
[1297]260;; enable verification of grobner bases with BUCHBERGER-CRITERION, do
261;; (pushnew :grobner-check *features*) and compile/load this file.
262;; With this feature, the calculations will slow down CONSIDERABLY.
263;;
264;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
265
[4051]266(defun grobner-test (g f)
[1297]267 "Test whether G is a Grobner basis and F is contained in G. Return T
268upon success and NIL otherwise."
269 (debug-cgb "~&GROBNER CHECK: ")
270 (let (($poly_grobner_debug nil)
[4051]271 (stat1 (buchberger-criterion g))
[1297]272 (stat2
[4051]273 (every #'universal-zerop
274 (makelist (normal-form (copy-tree (elt f i)) g nil)
[1297]275 (i 0 (1- (length f)))))))
[1404]276 (unless stat1 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]277 (unless stat2
[1406]278 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]279 (debug-cgb "~&GROBNER CHECK END")
280 t)
Note: See TracBrowser for help on using the repository browser.