[1199] | 1 | ;;; -*- Mode: Lisp -*-
|
---|
[148] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[459] | 22 | (defpackage "DIVISION"
|
---|
[4049] | 23 | (:use :cl :utils :monom :polynomial :grobner-debug)
|
---|
[470] | 24 | (:export "$POLY_TOP_REDUCTION_ONLY"
|
---|
| 25 | "POLY-PSEUDO-DIVIDE"
|
---|
[459] | 26 | "POLY-EXACT-DIVIDE"
|
---|
[491] | 27 | "NORMAL-FORM-STEP"
|
---|
[459] | 28 | "NORMAL-FORM"
|
---|
| 29 | "POLY-NORMALIZE"
|
---|
[472] | 30 | "POLY-NORMALIZE-LIST"
|
---|
[473] | 31 | "BUCHBERGER-CRITERION"
|
---|
[1299] | 32 | "GROBNER-TEST"
|
---|
[459] | 33 | ))
|
---|
[148] | 34 |
|
---|
[460] | 35 | (in-package :division)
|
---|
| 36 |
|
---|
[469] | 37 | (defvar $poly_top_reduction_only nil
|
---|
| 38 | "If not FALSE, use top reduction only whenever possible.
|
---|
| 39 | Top reduction means that division algorithm stops after the first reduction.")
|
---|
| 40 |
|
---|
[59] | 41 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 42 | ;;
|
---|
| 43 | ;; An implementation of the division algorithm
|
---|
| 44 | ;;
|
---|
| 45 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 46 |
|
---|
[4048] | 47 | (defun grobner-op (c1 c2 m f g)
|
---|
[59] | 48 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
|
---|
| 49 | Assume that the leading terms will cancel."
|
---|
[1965] | 50 | (declare (type ring-and-order ring-and-order)
|
---|
| 51 | (type monom m)
|
---|
| 52 | (type poly f g))
|
---|
[4048] | 53 | #+grobner-check(universal-zerop
|
---|
| 54 | (subtract
|
---|
| 55 | (multiply c2 (leading-coefficient f))
|
---|
| 56 | (multiply c1 (leading-coefficient g))))
|
---|
[4049] | 57 | #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g)))
|
---|
[1205] | 58 | ;; Note that below we can drop the leading terms of f ang g for the
|
---|
[1206] | 59 | ;; purpose of polynomial arithmetic.
|
---|
| 60 | ;;
|
---|
[1212] | 61 | ;; TODO: Make sure that the sugar calculation is correct if leading
|
---|
| 62 | ;; terms are dropped.
|
---|
[4049] | 63 | (subtract
|
---|
| 64 | (multiply c2 f)
|
---|
| 65 | (multiply c1 (multiply m g))))
|
---|
[59] | 66 |
|
---|
[4049] | 67 | (defun check-loop-invariant (c f a fl r p
|
---|
[1237] | 68 | &aux
|
---|
[1264] | 69 | (p-zero (make-poly-zero))
|
---|
| 70 | (a (mapcar #'poly-reverse a))
|
---|
| 71 | (r (poly-reverse r)))
|
---|
[1238] | 72 | "Check loop invariant of division algorithms, when we divide a
|
---|
| 73 | polynomial F by the list of polynomials FL. The invariant is the
|
---|
[1242] | 74 | identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
|
---|
[1238] | 75 | the list of partial quotients, R is the intermediate value of the
|
---|
[1242] | 76 | remainder, and P is the intermediate value which eventually becomes
|
---|
[1269] | 77 | 0. A thing to remember is that the terms of polynomials in A and
|
---|
| 78 | the polynomial R have their terms in reversed order. Hence, before
|
---|
| 79 | the arithmetic is performed, we need to fix the order of terms"
|
---|
[1413] | 80 | #|
|
---|
| 81 | (format t "~&----------------------------------------------------------------~%")
|
---|
| 82 | (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
|
---|
[1275] | 83 | c f a fl r p)
|
---|
[1413] | 84 | |#
|
---|
[4049] | 85 | (let* ((prod (inner-product a fl #'add #'multiply 0))
|
---|
| 86 | (succeeded-p
|
---|
| 87 | (universal-zerop
|
---|
| 88 | (subtract
|
---|
| 89 | (multiply c f)
|
---|
| 90 | (reduce #'add (list prod r p))))))
|
---|
| 91 | (unless succeeded-p
|
---|
| 92 | (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
|
---|
| 93 | c f a fl r p))
|
---|
| 94 | succeeded-p))
|
---|
[1237] | 95 |
|
---|
| 96 |
|
---|
[4049] | 97 | (defun poly-pseudo-divide (f fl)
|
---|
[59] | 98 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return
|
---|
| 99 | multiple values. The first value is a list of quotients A. The second
|
---|
| 100 | value is the remainder R. The third argument is a scalar coefficient
|
---|
| 101 | C, such that C*F can be divided by FL within the ring of coefficients,
|
---|
| 102 | which is not necessarily a field. Finally, the fourth value is an
|
---|
| 103 | integer count of the number of reductions performed. The resulting
|
---|
[1220] | 104 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
|
---|
[1221] | 105 | the quotients is initialized to default."
|
---|
[59] | 106 | (declare (type poly f) (list fl))
|
---|
[1241] | 107 | ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
|
---|
[4049] | 108 | (do ((r 0)
|
---|
| 109 | (c 1)
|
---|
| 110 | (a (make-list (length fl) :initial-element 0))
|
---|
[59] | 111 | (division-count 0)
|
---|
| 112 | (p f))
|
---|
[4049] | 113 | ((universal-zerop p)
|
---|
| 114 | #+grobner-check(check-loop-invariant c f a fl r p)
|
---|
[59] | 115 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
[4049] | 116 | (when (universal-zerop r) (debug-cgb " ---> 0"))
|
---|
[1211] | 117 | ;; We obtained the terms in reverse order, so must fix that
|
---|
[1210] | 118 | (setf a (mapcar #'poly-nreverse a)
|
---|
| 119 | r (poly-nreverse r))
|
---|
[1219] | 120 | ;; Initialize the sugar of the quotients
|
---|
[4049] | 121 | ;; (mapc #'poly-reset-sugar a) ;; TODO: Sugar is currently unimplemented
|
---|
[1210] | 122 | (values a r c division-count))
|
---|
[59] | 123 | (declare (fixnum division-count))
|
---|
[1252] | 124 | ;; Check the loop invariant here
|
---|
[4049] | 125 | #+grobner-check(check-loop-invariant c f a fl r p)
|
---|
[1207] | 126 | (do ((fl fl (rest fl)) ;scan list of divisors
|
---|
[59] | 127 | (b a (rest b)))
|
---|
| 128 | ((cond
|
---|
[1207] | 129 | ((endp fl) ;no division occurred
|
---|
[4049] | 130 | (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
| 131 | ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
[1207] | 132 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
| 133 | t)
|
---|
[4049] | 134 | ((monom-divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
|
---|
[1207] | 135 | (incf division-count)
|
---|
| 136 | (multiple-value-bind (gcd c1 c2)
|
---|
[4049] | 137 | (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
|
---|
[1207] | 138 | (declare (ignore gcd))
|
---|
[4049] | 139 | (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
|
---|
[1207] | 140 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
|
---|
| 141 | (mapl #'(lambda (x)
|
---|
[4049] | 142 | (setf (car x) (multiply c1 (car x))))
|
---|
[1207] | 143 | a)
|
---|
[4049] | 144 | (setf r (multiply c1 r)
|
---|
| 145 | c (multiply c c1)
|
---|
| 146 | p (grobner-op c2 c1 m p (car fl)))
|
---|
[1851] | 147 | (push (make-term :monom m :coeff c2) (poly-termlist (car b))))
|
---|
[1248] | 148 | t))))
|
---|
| 149 | )))
|
---|
[59] | 150 |
|
---|
[4049] | 151 | (defun poly-exact-divide (f g)
|
---|
[59] | 152 | "Divide a polynomial F by another polynomial G. Assume that exact division
|
---|
| 153 | with no remainder is possible. Returns the quotient."
|
---|
[4049] | 154 | (declare (type poly f g))
|
---|
[59] | 155 | (multiple-value-bind (quot rem coeff division-count)
|
---|
[4049] | 156 | (poly-pseudo-divide f (list g))
|
---|
[59] | 157 | (declare (ignore division-count coeff)
|
---|
| 158 | (list quot)
|
---|
| 159 | (type poly rem)
|
---|
| 160 | (type fixnum division-count))
|
---|
[4049] | 161 | (unless (universal-zerop rem) (error "Exact division failed."))
|
---|
[59] | 162 | (car quot)))
|
---|
| 163 |
|
---|
| 164 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 165 | ;;
|
---|
| 166 | ;; An implementation of the normal form
|
---|
| 167 | ;;
|
---|
| 168 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 169 |
|
---|
[4049] | 170 | (defun normal-form-step (fl p r c division-count
|
---|
[1180] | 171 | &aux
|
---|
[4049] | 172 | (g (find (leading-monomial p) fl
|
---|
[1180] | 173 | :test #'monom-divisible-by-p
|
---|
[4049] | 174 | :key #'leading-monomial)))
|
---|
[59] | 175 | (cond
|
---|
| 176 | (g ;division possible
|
---|
| 177 | (incf division-count)
|
---|
| 178 | (multiple-value-bind (gcd cg cp)
|
---|
[4049] | 179 | (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
|
---|
[59] | 180 | (declare (ignore gcd))
|
---|
[4049] | 181 | (let ((m (divide (leading-monomial p) (leading-monomial g))))
|
---|
[59] | 182 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
|
---|
[4049] | 183 | (setf r (multiply cg r)
|
---|
| 184 | c (multiply c cg)
|
---|
[59] | 185 | ;; p := cg*p-cp*m*g
|
---|
[4049] | 186 | p (grobner-op cp cg m p g))))
|
---|
[59] | 187 | (debug-cgb "/"))
|
---|
| 188 | (t ;no division possible
|
---|
[4049] | 189 | (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
|
---|
| 190 | ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
|
---|
[59] | 191 | (pop (poly-termlist p)) ;remove lt(p) from p
|
---|
| 192 | (debug-cgb "+")))
|
---|
| 193 | (values p r c division-count))
|
---|
| 194 |
|
---|
[1432] | 195 | ;;
|
---|
[1433] | 196 | ;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
|
---|
[1432] | 197 | ;;
|
---|
[1433] | 198 | ;; TODO: It is hard to test normal form as there is no loop invariant,
|
---|
| 199 | ;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
|
---|
| 200 | ;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
|
---|
| 201 | ;;
|
---|
[4049] | 202 | (defun normal-form (f fl
|
---|
| 203 | &optional
|
---|
| 204 | (top-reduction-only $poly_top_reduction_only))
|
---|
[1568] | 205 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
|
---|
[4049] | 206 | (do ((r 0)
|
---|
| 207 | (c 1)
|
---|
[1254] | 208 | (division-count 0))
|
---|
[4049] | 209 | ((or (universal-zerop f)
|
---|
[59] | 210 | ;;(endp fl)
|
---|
[4049] | 211 | (and top-reduction-only (not (universal-zerop r))))
|
---|
[59] | 212 | (progn
|
---|
[1239] | 213 | (debug-cgb "~&~3T~D reduction~:P" division-count)
|
---|
[4049] | 214 | (when (universal-zerop r)
|
---|
[59] | 215 | (debug-cgb " ---> 0")))
|
---|
| 216 | (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
|
---|
| 217 | (values f c division-count))
|
---|
| 218 | (declare (fixnum division-count)
|
---|
| 219 | (type poly r))
|
---|
| 220 | (multiple-value-setq (f r c division-count)
|
---|
[4049] | 221 | (normal-form-step fl f r c division-count))))
|
---|
[59] | 222 |
|
---|
[1187] | 223 | (defun buchberger-criterion (ring-and-order g)
|
---|
[59] | 224 | "Returns T if G is a Grobner basis, by using the Buchberger
|
---|
| 225 | criterion: for every two polynomials h1 and h2 in G the S-polynomial
|
---|
| 226 | S(h1,h2) reduces to 0 modulo G."
|
---|
[1222] | 227 | (every #'poly-zerop
|
---|
| 228 | (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil)
|
---|
| 229 | (i 0 (- (length g) 2))
|
---|
| 230 | (j (1+ i) (1- (length g))))))
|
---|
[59] | 231 |
|
---|
[64] | 232 |
|
---|
| 233 | (defun poly-normalize (ring p &aux (c (poly-lc p)))
|
---|
| 234 | "Divide a polynomial by its leading coefficient. It assumes
|
---|
| 235 | that the division is possible, which may not always be the
|
---|
| 236 | case in rings which are not fields. The exact division operator
|
---|
[1197] | 237 | is assumed to be provided by the RING structure."
|
---|
[64] | 238 | (mapc #'(lambda (term)
|
---|
| 239 | (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
|
---|
| 240 | (poly-termlist p))
|
---|
| 241 | p)
|
---|
| 242 |
|
---|
| 243 | (defun poly-normalize-list (ring plist)
|
---|
| 244 | "Divide every polynomial in a list PLIST by its leading coefficient. "
|
---|
| 245 | (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
|
---|
[1297] | 246 |
|
---|
| 247 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 248 | ;;
|
---|
| 249 | ;; The function GROBNER-CHECK is provided primarily for debugging purposes. To
|
---|
| 250 | ;; enable verification of grobner bases with BUCHBERGER-CRITERION, do
|
---|
| 251 | ;; (pushnew :grobner-check *features*) and compile/load this file.
|
---|
| 252 | ;; With this feature, the calculations will slow down CONSIDERABLY.
|
---|
| 253 | ;;
|
---|
| 254 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 255 |
|
---|
[1298] | 256 | (defun grobner-test (ring-and-order g f)
|
---|
[1297] | 257 | "Test whether G is a Grobner basis and F is contained in G. Return T
|
---|
| 258 | upon success and NIL otherwise."
|
---|
| 259 | (debug-cgb "~&GROBNER CHECK: ")
|
---|
| 260 | (let (($poly_grobner_debug nil)
|
---|
[1298] | 261 | (stat1 (buchberger-criterion ring-and-order g))
|
---|
[1297] | 262 | (stat2
|
---|
| 263 | (every #'poly-zerop
|
---|
[1298] | 264 | (makelist (normal-form ring-and-order (copy-tree (elt f i)) g nil)
|
---|
[1297] | 265 | (i 0 (1- (length f)))))))
|
---|
[1404] | 266 | (unless stat1 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
|
---|
[1297] | 267 | (unless stat2
|
---|
[1406] | 268 | (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
|
---|
[1297] | 269 | (debug-cgb "~&GROBNER CHECK END")
|
---|
| 270 | t)
|
---|