close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 4049

Last change on this file since 4049 was 4049, checked in by Marek Rychlik, 8 years ago

* empty log message *

File size: 10.6 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[4049]23 (:use :cl :utils :monom :polynomial :grobner-debug)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[459]33 ))
[148]34
[460]35(in-package :division)
36
[469]37(defvar $poly_top_reduction_only nil
38 "If not FALSE, use top reduction only whenever possible.
39Top reduction means that division algorithm stops after the first reduction.")
40
[59]41;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
42;;
43;; An implementation of the division algorithm
44;;
45;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
46
[4048]47(defun grobner-op (c1 c2 m f g)
[59]48 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
49Assume that the leading terms will cancel."
[1965]50 (declare (type ring-and-order ring-and-order)
51 (type monom m)
52 (type poly f g))
[4048]53 #+grobner-check(universal-zerop
54 (subtract
55 (multiply c2 (leading-coefficient f))
56 (multiply c1 (leading-coefficient g))))
[4049]57 #+grobner-check(universal-equalp (leading-monomial f) (multiply m (leading-monomial g)))
[1205]58 ;; Note that below we can drop the leading terms of f ang g for the
[1206]59 ;; purpose of polynomial arithmetic.
60 ;;
[1212]61 ;; TODO: Make sure that the sugar calculation is correct if leading
62 ;; terms are dropped.
[4049]63 (subtract
64 (multiply c2 f)
65 (multiply c1 (multiply m g))))
[59]66
[4049]67(defun check-loop-invariant (c f a fl r p
[1237]68 &aux
[1264]69 (p-zero (make-poly-zero))
70 (a (mapcar #'poly-reverse a))
71 (r (poly-reverse r)))
[1238]72 "Check loop invariant of division algorithms, when we divide a
73polynomial F by the list of polynomials FL. The invariant is the
[1242]74identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]75the list of partial quotients, R is the intermediate value of the
[1242]76remainder, and P is the intermediate value which eventually becomes
[1269]770. A thing to remember is that the terms of polynomials in A and
78the polynomial R have their terms in reversed order. Hence, before
79the arithmetic is performed, we need to fix the order of terms"
[1413]80 #|
81 (format t "~&----------------------------------------------------------------~%")
82 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]83 c f a fl r p)
[1413]84 |#
[4049]85 (let* ((prod (inner-product a fl #'add #'multiply 0))
86 (succeeded-p
87 (universal-zerop
88 (subtract
89 (multiply c f)
90 (reduce #'add (list prod r p))))))
91 (unless succeeded-p
92 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
93 c f a fl r p))
94 succeeded-p))
[1237]95
96
[4049]97(defun poly-pseudo-divide (f fl)
[59]98 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
99multiple values. The first value is a list of quotients A. The second
100value is the remainder R. The third argument is a scalar coefficient
101C, such that C*F can be divided by FL within the ring of coefficients,
102which is not necessarily a field. Finally, the fourth value is an
103integer count of the number of reductions performed. The resulting
[1220]104objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]105the quotients is initialized to default."
[59]106 (declare (type poly f) (list fl))
[1241]107 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[4049]108 (do ((r 0)
109 (c 1)
110 (a (make-list (length fl) :initial-element 0))
[59]111 (division-count 0)
112 (p f))
[4049]113 ((universal-zerop p)
114 #+grobner-check(check-loop-invariant c f a fl r p)
[59]115 (debug-cgb "~&~3T~d reduction~:p" division-count)
[4049]116 (when (universal-zerop r) (debug-cgb " ---> 0"))
[1211]117 ;; We obtained the terms in reverse order, so must fix that
[1210]118 (setf a (mapcar #'poly-nreverse a)
119 r (poly-nreverse r))
[1219]120 ;; Initialize the sugar of the quotients
[4049]121 ;; (mapc #'poly-reset-sugar a) ;; TODO: Sugar is currently unimplemented
[1210]122 (values a r c division-count))
[59]123 (declare (fixnum division-count))
[1252]124 ;; Check the loop invariant here
[4049]125 #+grobner-check(check-loop-invariant c f a fl r p)
[1207]126 (do ((fl fl (rest fl)) ;scan list of divisors
[59]127 (b a (rest b)))
128 ((cond
[1207]129 ((endp fl) ;no division occurred
[4049]130 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
131 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
[1207]132 (pop (poly-termlist p)) ;remove lt(p) from p
133 t)
[4049]134 ((monom-divides-p (leading-monomial (car fl)) (leading-monomial p)) ;division occurred
[1207]135 (incf division-count)
136 (multiple-value-bind (gcd c1 c2)
[4049]137 (universal-ezgcd (leading-coefficient (car fl)) (leading-coefficient p))
[1207]138 (declare (ignore gcd))
[4049]139 (let ((m (divide (leading-monomial p) (leading-monomial (car fl)))))
[1207]140 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
141 (mapl #'(lambda (x)
[4049]142 (setf (car x) (multiply c1 (car x))))
[1207]143 a)
[4049]144 (setf r (multiply c1 r)
145 c (multiply c c1)
146 p (grobner-op c2 c1 m p (car fl)))
[1851]147 (push (make-term :monom m :coeff c2) (poly-termlist (car b))))
[1248]148 t))))
149 )))
[59]150
[4049]151(defun poly-exact-divide (f g)
[59]152 "Divide a polynomial F by another polynomial G. Assume that exact division
153with no remainder is possible. Returns the quotient."
[4049]154 (declare (type poly f g))
[59]155 (multiple-value-bind (quot rem coeff division-count)
[4049]156 (poly-pseudo-divide f (list g))
[59]157 (declare (ignore division-count coeff)
158 (list quot)
159 (type poly rem)
160 (type fixnum division-count))
[4049]161 (unless (universal-zerop rem) (error "Exact division failed."))
[59]162 (car quot)))
163
164;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
165;;
166;; An implementation of the normal form
167;;
168;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
169
[4049]170(defun normal-form-step (fl p r c division-count
[1180]171 &aux
[4049]172 (g (find (leading-monomial p) fl
[1180]173 :test #'monom-divisible-by-p
[4049]174 :key #'leading-monomial)))
[59]175 (cond
176 (g ;division possible
177 (incf division-count)
178 (multiple-value-bind (gcd cg cp)
[4049]179 (universal-ezgcd (leading-coefficient g) (leading-coefficient p))
[59]180 (declare (ignore gcd))
[4049]181 (let ((m (divide (leading-monomial p) (leading-monomial g))))
[59]182 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
[4049]183 (setf r (multiply cg r)
184 c (multiply c cg)
[59]185 ;; p := cg*p-cp*m*g
[4049]186 p (grobner-op cp cg m p g))))
[59]187 (debug-cgb "/"))
188 (t ;no division possible
[4049]189 (push (leading-term p) (poly-termlist r)) ;move lt(p) to remainder
190 ;;(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
[59]191 (pop (poly-termlist p)) ;remove lt(p) from p
192 (debug-cgb "+")))
193 (values p r c division-count))
194
[1432]195;;
[1433]196;; Merge NORMAL-FORM someday with POLY-PSEUDO-DIVIDE.
[1432]197;;
[1433]198;; TODO: It is hard to test normal form as there is no loop invariant,
199;; like for POLY-PSEUDO-DIVIDE. Is there a testing strategy? One
200;; method would be to test NORMAL-FORM using POLY-PSEUDO-DIVIDE.
201;;
[4049]202(defun normal-form (f fl
203 &optional
204 (top-reduction-only $poly_top_reduction_only))
[1568]205 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
[4049]206 (do ((r 0)
207 (c 1)
[1254]208 (division-count 0))
[4049]209 ((or (universal-zerop f)
[59]210 ;;(endp fl)
[4049]211 (and top-reduction-only (not (universal-zerop r))))
[59]212 (progn
[1239]213 (debug-cgb "~&~3T~D reduction~:P" division-count)
[4049]214 (when (universal-zerop r)
[59]215 (debug-cgb " ---> 0")))
216 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
217 (values f c division-count))
218 (declare (fixnum division-count)
219 (type poly r))
220 (multiple-value-setq (f r c division-count)
[4049]221 (normal-form-step fl f r c division-count))))
[59]222
[1187]223(defun buchberger-criterion (ring-and-order g)
[59]224 "Returns T if G is a Grobner basis, by using the Buchberger
225criterion: for every two polynomials h1 and h2 in G the S-polynomial
226S(h1,h2) reduces to 0 modulo G."
[1222]227 (every #'poly-zerop
228 (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil)
229 (i 0 (- (length g) 2))
230 (j (1+ i) (1- (length g))))))
[59]231
[64]232
233(defun poly-normalize (ring p &aux (c (poly-lc p)))
234 "Divide a polynomial by its leading coefficient. It assumes
235that the division is possible, which may not always be the
236case in rings which are not fields. The exact division operator
[1197]237is assumed to be provided by the RING structure."
[64]238 (mapc #'(lambda (term)
239 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
240 (poly-termlist p))
241 p)
242
243(defun poly-normalize-list (ring plist)
244 "Divide every polynomial in a list PLIST by its leading coefficient. "
245 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
[1297]246
247;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248;;
249;; The function GROBNER-CHECK is provided primarily for debugging purposes. To
250;; enable verification of grobner bases with BUCHBERGER-CRITERION, do
251;; (pushnew :grobner-check *features*) and compile/load this file.
252;; With this feature, the calculations will slow down CONSIDERABLY.
253;;
254;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
255
[1298]256(defun grobner-test (ring-and-order g f)
[1297]257 "Test whether G is a Grobner basis and F is contained in G. Return T
258upon success and NIL otherwise."
259 (debug-cgb "~&GROBNER CHECK: ")
260 (let (($poly_grobner_debug nil)
[1298]261 (stat1 (buchberger-criterion ring-and-order g))
[1297]262 (stat2
263 (every #'poly-zerop
[1298]264 (makelist (normal-form ring-and-order (copy-tree (elt f i)) g nil)
[1297]265 (i 0 (1- (length f)))))))
[1404]266 (unless stat1 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]267 (unless stat2
[1406]268 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]269 (debug-cgb "~&GROBNER CHECK END")
270 t)
Note: See TracBrowser for help on using the repository browser.