close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 1432

Last change on this file since 1432 was 1432, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 11.1 KB
RevLine 
[1199]1;;; -*- Mode: Lisp -*-
[148]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[1177]23 (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[1299]32 "GROBNER-TEST"
[459]33 ))
[148]34
[460]35(in-package :division)
36
[469]37(defvar $poly_top_reduction_only nil
38 "If not FALSE, use top reduction only whenever possible.
39Top reduction means that division algorithm stops after the first reduction.")
40
[59]41;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
42;;
43;; An implementation of the division algorithm
44;;
45;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
46
[1176]47(defun grobner-op (ring-and-order c1 c2 m f g
48 &aux
49 (ring (ro-ring ring-and-order)))
[59]50 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
51Assume that the leading terms will cancel."
[1178]52 (declare (type ring-and-order ring-and-order))
[59]53 #+grobner-check(funcall (ring-zerop ring)
54 (funcall (ring-sub ring)
55 (funcall (ring-mul ring) c2 (poly-lc f))
56 (funcall (ring-mul ring) c1 (poly-lc g))))
57 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
[1205]58 ;; Note that below we can drop the leading terms of f ang g for the
[1206]59 ;; purpose of polynomial arithmetic.
60 ;;
[1212]61 ;; TODO: Make sure that the sugar calculation is correct if leading
62 ;; terms are dropped.
[1176]63 (poly-sub ring-and-order
[1263]64 (scalar-times-poly-1 ring c2 f)
65 (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
[59]66
[1242]67(defun check-loop-invariant (ring-and-order c f a fl r p
[1237]68 &aux
69 (ring (ro-ring ring-and-order))
[1264]70 (p-zero (make-poly-zero))
71 (a (mapcar #'poly-reverse a))
72 (r (poly-reverse r)))
[1238]73 "Check loop invariant of division algorithms, when we divide a
74polynomial F by the list of polynomials FL. The invariant is the
[1242]75identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is
[1238]76the list of partial quotients, R is the intermediate value of the
[1242]77remainder, and P is the intermediate value which eventually becomes
[1269]780. A thing to remember is that the terms of polynomials in A and
79the polynomial R have their terms in reversed order. Hence, before
80the arithmetic is performed, we need to fix the order of terms"
[1413]81 #|
82 (format t "~&----------------------------------------------------------------~%")
83 (format t "#### Loop invariant check ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1275]84 c f a fl r p)
[1413]85 |#
[1242]86 (flet ((p-add (x y) (poly-add ring-and-order x y))
87 (p-sub (x y) (poly-sub ring-and-order x y))
88 (p-mul (x y) (poly-mul ring-and-order x y)))
[1257]89 (let* ((prod (inner-product a fl p-add p-mul p-zero))
90 (succeeded-p
91 (poly-zerop
92 (p-sub
93 (scalar-times-poly ring c f)
94 (reduce #'p-add (list prod r p))))))
[1270]95 (unless succeeded-p
[1280]96 (error "#### Polynomial division Loop invariant failed ####:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%"
[1271]97 c f a fl r p))
[1257]98 succeeded-p)))
[1237]99
100
[1179]101(defun poly-pseudo-divide (ring-and-order f fl
102 &aux
103 (ring (ro-ring ring-and-order)))
[59]104 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
105multiple values. The first value is a list of quotients A. The second
106value is the remainder R. The third argument is a scalar coefficient
107C, such that C*F can be divided by FL within the ring of coefficients,
108which is not necessarily a field. Finally, the fourth value is an
109integer count of the number of reductions performed. The resulting
[1220]110objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of
[1221]111the quotients is initialized to default."
[59]112 (declare (type poly f) (list fl))
[1241]113 ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0
[59]114 (do ((r (make-poly-zero))
115 (c (funcall (ring-unit ring)))
116 (a (make-list (length fl) :initial-element (make-poly-zero)))
117 (division-count 0)
118 (p f))
119 ((poly-zerop p)
[1278]120 #+grobner-check(check-loop-invariant ring-and-order c f a fl r p)
[59]121 (debug-cgb "~&~3T~d reduction~:p" division-count)
122 (when (poly-zerop r) (debug-cgb " ---> 0"))
[1211]123 ;; We obtained the terms in reverse order, so must fix that
[1210]124 (setf a (mapcar #'poly-nreverse a)
125 r (poly-nreverse r))
[1219]126 ;; Initialize the sugar of the quotients
127 (mapc #'poly-reset-sugar a)
[1210]128 (values a r c division-count))
[59]129 (declare (fixnum division-count))
[1252]130 ;; Check the loop invariant here
[1277]131 #+grobner-check(check-loop-invariant ring-and-order c f a fl r p)
[1207]132 (do ((fl fl (rest fl)) ;scan list of divisors
[59]133 (b a (rest b)))
134 ((cond
[1207]135 ((endp fl) ;no division occurred
136 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
137 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
138 (pop (poly-termlist p)) ;remove lt(p) from p
139 t)
140 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
141 (incf division-count)
142 (multiple-value-bind (gcd c1 c2)
143 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
144 (declare (ignore gcd))
145 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
146 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
147 (mapl #'(lambda (x)
148 (setf (car x) (scalar-times-poly ring c1 (car x))))
149 a)
150 (setf r (scalar-times-poly ring c1 r)
151 c (funcall (ring-mul ring) c c1)
152 p (grobner-op ring-and-order c2 c1 m p (car fl)))
153 (push (make-term m c2) (poly-termlist (car b))))
[1248]154 t))))
155 )))
[59]156
[1284]157(defun poly-exact-divide (ring-and-order f g)
[59]158 "Divide a polynomial F by another polynomial G. Assume that exact division
159with no remainder is possible. Returns the quotient."
[1284]160 (declare (type poly f g) (type ring-and-order ring-and-order))
[59]161 (multiple-value-bind (quot rem coeff division-count)
[1284]162 (poly-pseudo-divide ring-and-order f (list g))
[59]163 (declare (ignore division-count coeff)
164 (list quot)
165 (type poly rem)
166 (type fixnum division-count))
167 (unless (poly-zerop rem) (error "Exact division failed."))
168 (car quot)))
169
170;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
171;;
172;; An implementation of the normal form
173;;
174;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
175
[1180]176(defun normal-form-step (ring-and-order fl p r c division-count
177 &aux
178 (ring (ro-ring ring-and-order))
179 (g (find (poly-lm p) fl
180 :test #'monom-divisible-by-p
181 :key #'poly-lm)))
[59]182 (cond
183 (g ;division possible
184 (incf division-count)
185 (multiple-value-bind (gcd cg cp)
186 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
187 (declare (ignore gcd))
188 (let ((m (monom-div (poly-lm p) (poly-lm g))))
189 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
190 (setf r (scalar-times-poly ring cg r)
191 c (funcall (ring-mul ring) c cg)
192 ;; p := cg*p-cp*m*g
[1181]193 p (grobner-op ring-and-order cp cg m p g))))
[59]194 (debug-cgb "/"))
195 (t ;no division possible
196 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
197 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
198 (pop (poly-termlist p)) ;remove lt(p) from p
199 (debug-cgb "+")))
200 (values p r c division-count))
201
[1432]202;; Merge it someday with POLY-PSEUDO-DIVIDE.
203;;
204;; TODO: It is hard to test normal form as there is no
205;; loop invariant, like for POLY-PSEUDO-DIVIDE.
206;; Is there a testing strategy?
207;;
[1182]208(defun normal-form (ring-and-order f fl
209 &optional
210 (top-reduction-only $poly_top_reduction_only)
211 (ring (ro-ring ring-and-order)))
[59]212 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
213 (do ((r (make-poly-zero))
214 (c (funcall (ring-unit ring)))
[1254]215 (division-count 0))
[59]216 ((or (poly-zerop f)
217 ;;(endp fl)
218 (and top-reduction-only (not (poly-zerop r))))
219 (progn
[1239]220 (debug-cgb "~&~3T~D reduction~:P" division-count)
[59]221 (when (poly-zerop r)
222 (debug-cgb " ---> 0")))
223 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
224 (values f c division-count))
225 (declare (fixnum division-count)
226 (type poly r))
227 (multiple-value-setq (f r c division-count)
[1182]228 (normal-form-step ring-and-order fl f r c division-count))))
[59]229
[1187]230(defun buchberger-criterion (ring-and-order g)
[59]231 "Returns T if G is a Grobner basis, by using the Buchberger
232criterion: for every two polynomials h1 and h2 in G the S-polynomial
233S(h1,h2) reduces to 0 modulo G."
[1222]234 (every #'poly-zerop
235 (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil)
236 (i 0 (- (length g) 2))
237 (j (1+ i) (1- (length g))))))
[59]238
[64]239
240(defun poly-normalize (ring p &aux (c (poly-lc p)))
241 "Divide a polynomial by its leading coefficient. It assumes
242that the division is possible, which may not always be the
243case in rings which are not fields. The exact division operator
[1197]244is assumed to be provided by the RING structure."
[64]245 (mapc #'(lambda (term)
246 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
247 (poly-termlist p))
248 p)
249
250(defun poly-normalize-list (ring plist)
251 "Divide every polynomial in a list PLIST by its leading coefficient. "
252 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
[1297]253
254;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
255;;
256;; The function GROBNER-CHECK is provided primarily for debugging purposes. To
257;; enable verification of grobner bases with BUCHBERGER-CRITERION, do
258;; (pushnew :grobner-check *features*) and compile/load this file.
259;; With this feature, the calculations will slow down CONSIDERABLY.
260;;
261;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
262
[1298]263(defun grobner-test (ring-and-order g f)
[1297]264 "Test whether G is a Grobner basis and F is contained in G. Return T
265upon success and NIL otherwise."
266 (debug-cgb "~&GROBNER CHECK: ")
267 (let (($poly_grobner_debug nil)
[1298]268 (stat1 (buchberger-criterion ring-and-order g))
[1297]269 (stat2
270 (every #'poly-zerop
[1298]271 (makelist (normal-form ring-and-order (copy-tree (elt f i)) g nil)
[1297]272 (i 0 (1- (length f)))))))
[1404]273 (unless stat1 (error "~&Buchberger criterion failed, not a grobner basis: ~A" g))
[1297]274 (unless stat2
[1406]275 (error "~&Original polynomials not in ideal spanned by Grobner basis: ~A" f)))
[1297]276 (debug-cgb "~&GROBNER CHECK END")
277 t)
Note: See TracBrowser for help on using the repository browser.