| [1199] | 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| [148] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 3 | ;;; | 
|---|
|  | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 5 | ;;; | 
|---|
|  | 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 9 | ;;;  (at your option) any later version. | 
|---|
|  | 10 | ;;; | 
|---|
|  | 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 14 | ;;;  GNU General Public License for more details. | 
|---|
|  | 15 | ;;; | 
|---|
|  | 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 19 | ;;; | 
|---|
|  | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 21 |  | 
|---|
| [459] | 22 | (defpackage "DIVISION" | 
|---|
| [1177] | 23 | (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order) | 
|---|
| [470] | 24 | (:export "$POLY_TOP_REDUCTION_ONLY" | 
|---|
|  | 25 | "POLY-PSEUDO-DIVIDE" | 
|---|
| [459] | 26 | "POLY-EXACT-DIVIDE" | 
|---|
| [491] | 27 | "NORMAL-FORM-STEP" | 
|---|
| [459] | 28 | "NORMAL-FORM" | 
|---|
|  | 29 | "POLY-NORMALIZE" | 
|---|
| [472] | 30 | "POLY-NORMALIZE-LIST" | 
|---|
| [473] | 31 | "BUCHBERGER-CRITERION" | 
|---|
| [459] | 32 | )) | 
|---|
| [148] | 33 |  | 
|---|
| [460] | 34 | (in-package :division) | 
|---|
|  | 35 |  | 
|---|
| [469] | 36 | (defvar $poly_top_reduction_only nil | 
|---|
|  | 37 | "If not FALSE, use top reduction only whenever possible. | 
|---|
|  | 38 | Top reduction means that division algorithm stops after the first reduction.") | 
|---|
|  | 39 |  | 
|---|
| [59] | 40 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 41 | ;; | 
|---|
|  | 42 | ;; An implementation of the division algorithm | 
|---|
|  | 43 | ;; | 
|---|
|  | 44 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 45 |  | 
|---|
| [1176] | 46 | (defun grobner-op (ring-and-order c1 c2 m f g | 
|---|
|  | 47 | &aux | 
|---|
|  | 48 | (ring (ro-ring ring-and-order))) | 
|---|
| [59] | 49 | "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial. | 
|---|
|  | 50 | Assume that the leading terms will cancel." | 
|---|
| [1178] | 51 | (declare (type ring-and-order ring-and-order)) | 
|---|
| [59] | 52 | #+grobner-check(funcall (ring-zerop ring) | 
|---|
|  | 53 | (funcall (ring-sub ring) | 
|---|
|  | 54 | (funcall (ring-mul ring) c2 (poly-lc f)) | 
|---|
|  | 55 | (funcall (ring-mul ring) c1 (poly-lc g)))) | 
|---|
|  | 56 | #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g))) | 
|---|
| [1205] | 57 | ;; Note that below we can drop the leading terms of f ang g for the | 
|---|
| [1206] | 58 | ;; purpose of polynomial arithmetic. | 
|---|
|  | 59 | ;; | 
|---|
| [1212] | 60 | ;; TODO: Make sure that the sugar calculation is correct if leading | 
|---|
|  | 61 | ;; terms are dropped. | 
|---|
| [1176] | 62 | (poly-sub ring-and-order | 
|---|
| [1263] | 63 | (scalar-times-poly-1 ring c2 f) | 
|---|
|  | 64 | (scalar-times-poly-1 ring c1 (monom-times-poly m g)))) | 
|---|
| [59] | 65 |  | 
|---|
| [1242] | 66 | (defun check-loop-invariant (ring-and-order c f a fl r p | 
|---|
| [1237] | 67 | &aux | 
|---|
|  | 68 | (ring (ro-ring ring-and-order)) | 
|---|
| [1264] | 69 | (p-zero (make-poly-zero)) | 
|---|
|  | 70 | (a (mapcar #'poly-reverse a)) | 
|---|
|  | 71 | (r (poly-reverse r))) | 
|---|
| [1238] | 72 | "Check loop invariant of division algorithms, when we divide a | 
|---|
|  | 73 | polynomial F by the list of polynomials FL. The invariant is the | 
|---|
| [1242] | 74 | identity C*F=SUM AI*FI+R+P, where F0 is the initial value of F, A is | 
|---|
| [1238] | 75 | the list of partial quotients, R is the intermediate value of the | 
|---|
| [1242] | 76 | remainder, and P is the intermediate value which eventually becomes | 
|---|
| [1269] | 77 | 0. A thing to remember is that the terms of polynomials in A and | 
|---|
|  | 78 | the polynomial R have their terms in reversed order. Hence, before | 
|---|
|  | 79 | the arithmetic is performed, we need to fix the order of terms" | 
|---|
| [1275] | 80 | (format t "Loop invariant check:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
|  | 81 | c f a fl r p) | 
|---|
| [1242] | 82 | (flet ((p-add (x y) (poly-add ring-and-order x y)) | 
|---|
|  | 83 | (p-sub (x y) (poly-sub ring-and-order x y)) | 
|---|
|  | 84 | (p-mul (x y) (poly-mul ring-and-order x y))) | 
|---|
| [1257] | 85 | (let* ((prod (inner-product a fl p-add p-mul p-zero)) | 
|---|
|  | 86 | (succeeded-p | 
|---|
|  | 87 | (poly-zerop | 
|---|
|  | 88 | (p-sub | 
|---|
|  | 89 | (scalar-times-poly ring c f) | 
|---|
|  | 90 | (reduce #'p-add (list prod r p)))))) | 
|---|
| [1270] | 91 | (unless succeeded-p | 
|---|
| [1271] | 92 | (error "Polynomial division Loop invariant failed:~%C=~A~%F=~A~%A=~A~%FL=~A~%R=~A~%P=~A~%" | 
|---|
|  | 93 | c f a fl r p)) | 
|---|
| [1257] | 94 | succeeded-p))) | 
|---|
| [1237] | 95 |  | 
|---|
|  | 96 |  | 
|---|
| [1179] | 97 | (defun poly-pseudo-divide (ring-and-order f fl | 
|---|
|  | 98 | &aux | 
|---|
|  | 99 | (ring (ro-ring ring-and-order))) | 
|---|
| [59] | 100 | "Pseudo-divide a polynomial F by the list of polynomials FL. Return | 
|---|
|  | 101 | multiple values. The first value is a list of quotients A.  The second | 
|---|
|  | 102 | value is the remainder R. The third argument is a scalar coefficient | 
|---|
|  | 103 | C, such that C*F can be divided by FL within the ring of coefficients, | 
|---|
|  | 104 | which is not necessarily a field. Finally, the fourth value is an | 
|---|
|  | 105 | integer count of the number of reductions performed.  The resulting | 
|---|
| [1220] | 106 | objects satisfy the equation: C*F= sum A[i]*FL[i] + R. The sugar of | 
|---|
| [1221] | 107 | the quotients is initialized to default." | 
|---|
| [59] | 108 | (declare (type poly f) (list fl)) | 
|---|
| [1241] | 109 | ;; Loop invariant: c*f=sum ai*fi+r+p, where p must eventually become 0 | 
|---|
| [59] | 110 | (do ((r (make-poly-zero)) | 
|---|
|  | 111 | (c (funcall (ring-unit ring))) | 
|---|
|  | 112 | (a (make-list (length fl) :initial-element (make-poly-zero))) | 
|---|
|  | 113 | (division-count 0) | 
|---|
|  | 114 | (p f)) | 
|---|
|  | 115 | ((poly-zerop p) | 
|---|
|  | 116 | (debug-cgb "~&~3T~d reduction~:p" division-count) | 
|---|
|  | 117 | (when (poly-zerop r) (debug-cgb " ---> 0")) | 
|---|
| [1211] | 118 | ;; We obtained the terms in reverse order, so must fix that | 
|---|
| [1210] | 119 | (setf a (mapcar #'poly-nreverse a) | 
|---|
|  | 120 | r (poly-nreverse r)) | 
|---|
| [1219] | 121 | ;; Initialize the sugar of the quotients | 
|---|
|  | 122 | (mapc #'poly-reset-sugar a) | 
|---|
| [1210] | 123 | (values a r c division-count)) | 
|---|
| [59] | 124 | (declare (fixnum division-count)) | 
|---|
| [1252] | 125 | ;; Check the loop invariant here | 
|---|
| [1273] | 126 | (check-loop-invariant ring-and-order c f a fl r p) | 
|---|
| [1207] | 127 | (do ((fl fl (rest fl))              ;scan list of divisors | 
|---|
| [59] | 128 | (b a (rest b))) | 
|---|
|  | 129 | ((cond | 
|---|
| [1207] | 130 | ((endp fl)                           ;no division occurred | 
|---|
|  | 131 | (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder | 
|---|
|  | 132 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p)))) | 
|---|
|  | 133 | (pop (poly-termlist p))     ;remove lt(p) from p | 
|---|
|  | 134 | t) | 
|---|
|  | 135 | ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred | 
|---|
|  | 136 | (incf division-count) | 
|---|
|  | 137 | (multiple-value-bind (gcd c1 c2) | 
|---|
|  | 138 | (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p)) | 
|---|
|  | 139 | (declare (ignore gcd)) | 
|---|
|  | 140 | (let ((m (monom-div (poly-lm p) (poly-lm (car fl))))) | 
|---|
|  | 141 | ;; Multiply the equation c*f=sum ai*fi+r+p by c1. | 
|---|
|  | 142 | (mapl #'(lambda (x) | 
|---|
|  | 143 | (setf (car x) (scalar-times-poly ring c1 (car x)))) | 
|---|
|  | 144 | a) | 
|---|
|  | 145 | (setf r (scalar-times-poly ring c1 r) | 
|---|
|  | 146 | c (funcall (ring-mul ring) c c1) | 
|---|
|  | 147 | p (grobner-op ring-and-order c2 c1 m p (car fl))) | 
|---|
|  | 148 | (push (make-term m c2) (poly-termlist (car b)))) | 
|---|
| [1248] | 149 | t)))) | 
|---|
|  | 150 | ))) | 
|---|
| [59] | 151 |  | 
|---|
|  | 152 | (defun poly-exact-divide (ring f g) | 
|---|
|  | 153 | "Divide a polynomial F by another polynomial G. Assume that exact division | 
|---|
|  | 154 | with no remainder is possible. Returns the quotient." | 
|---|
|  | 155 | (declare (type poly f g)) | 
|---|
|  | 156 | (multiple-value-bind (quot rem coeff division-count) | 
|---|
|  | 157 | (poly-pseudo-divide ring f (list g)) | 
|---|
|  | 158 | (declare (ignore division-count coeff) | 
|---|
|  | 159 | (list quot) | 
|---|
|  | 160 | (type poly rem) | 
|---|
|  | 161 | (type fixnum division-count)) | 
|---|
|  | 162 | (unless (poly-zerop rem) (error "Exact division failed.")) | 
|---|
|  | 163 | (car quot))) | 
|---|
|  | 164 |  | 
|---|
|  | 165 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 166 | ;; | 
|---|
|  | 167 | ;; An implementation of the normal form | 
|---|
|  | 168 | ;; | 
|---|
|  | 169 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 170 |  | 
|---|
| [1180] | 171 | (defun normal-form-step (ring-and-order fl p r c division-count | 
|---|
|  | 172 | &aux | 
|---|
|  | 173 | (ring (ro-ring ring-and-order)) | 
|---|
|  | 174 | (g (find (poly-lm p) fl | 
|---|
|  | 175 | :test #'monom-divisible-by-p | 
|---|
|  | 176 | :key #'poly-lm))) | 
|---|
| [59] | 177 | (cond | 
|---|
|  | 178 | (g                                   ;division possible | 
|---|
|  | 179 | (incf division-count) | 
|---|
|  | 180 | (multiple-value-bind (gcd cg cp) | 
|---|
|  | 181 | (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p)) | 
|---|
|  | 182 | (declare (ignore gcd)) | 
|---|
|  | 183 | (let ((m (monom-div (poly-lm p) (poly-lm g)))) | 
|---|
|  | 184 | ;; Multiply the equation c*f=sum ai*fi+r+p by cg. | 
|---|
|  | 185 | (setf r (scalar-times-poly ring cg r) | 
|---|
|  | 186 | c (funcall (ring-mul ring) c cg) | 
|---|
|  | 187 | ;; p := cg*p-cp*m*g | 
|---|
| [1181] | 188 | p (grobner-op ring-and-order cp cg m p g)))) | 
|---|
| [59] | 189 | (debug-cgb "/")) | 
|---|
|  | 190 | (t                                                   ;no division possible | 
|---|
|  | 191 | (push (poly-lt p) (poly-termlist r))                ;move lt(p) to remainder | 
|---|
|  | 192 | (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p)))) | 
|---|
|  | 193 | (pop (poly-termlist p))                             ;remove lt(p) from p | 
|---|
|  | 194 | (debug-cgb "+"))) | 
|---|
|  | 195 | (values p r c division-count)) | 
|---|
|  | 196 |  | 
|---|
|  | 197 | ;; Merge it sometime with poly-pseudo-divide | 
|---|
| [1182] | 198 | (defun normal-form (ring-and-order f fl | 
|---|
|  | 199 | &optional | 
|---|
|  | 200 | (top-reduction-only $poly_top_reduction_only) | 
|---|
|  | 201 | (ring (ro-ring ring-and-order))) | 
|---|
| [59] | 202 | #+grobner-check(when (null fl) (warn "normal-form: empty divisor list.")) | 
|---|
|  | 203 | (do ((r (make-poly-zero)) | 
|---|
|  | 204 | (c (funcall (ring-unit ring))) | 
|---|
| [1254] | 205 | (division-count 0)) | 
|---|
| [59] | 206 | ((or (poly-zerop f) | 
|---|
|  | 207 | ;;(endp fl) | 
|---|
|  | 208 | (and top-reduction-only (not (poly-zerop r)))) | 
|---|
|  | 209 | (progn | 
|---|
| [1239] | 210 | (debug-cgb "~&~3T~D reduction~:P" division-count) | 
|---|
| [59] | 211 | (when (poly-zerop r) | 
|---|
|  | 212 | (debug-cgb " ---> 0"))) | 
|---|
|  | 213 | (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f))) | 
|---|
|  | 214 | (values f c division-count)) | 
|---|
|  | 215 | (declare (fixnum division-count) | 
|---|
|  | 216 | (type poly r)) | 
|---|
|  | 217 | (multiple-value-setq (f r c division-count) | 
|---|
| [1182] | 218 | (normal-form-step ring-and-order fl f r c division-count)))) | 
|---|
| [59] | 219 |  | 
|---|
| [1187] | 220 | (defun buchberger-criterion (ring-and-order g) | 
|---|
| [59] | 221 | "Returns T if G is a Grobner basis, by using the Buchberger | 
|---|
|  | 222 | criterion: for every two polynomials h1 and h2 in G the S-polynomial | 
|---|
|  | 223 | S(h1,h2) reduces to 0 modulo G." | 
|---|
| [1222] | 224 | (every #'poly-zerop | 
|---|
|  | 225 | (makelist (normal-form ring-and-order (spoly ring-and-order (elt g i) (elt g j)) g nil) | 
|---|
|  | 226 | (i 0 (- (length g) 2)) | 
|---|
|  | 227 | (j (1+ i) (1- (length g)))))) | 
|---|
| [59] | 228 |  | 
|---|
| [64] | 229 |  | 
|---|
|  | 230 | (defun poly-normalize (ring p &aux (c (poly-lc p))) | 
|---|
|  | 231 | "Divide a polynomial by its leading coefficient. It assumes | 
|---|
|  | 232 | that the division is possible, which may not always be the | 
|---|
|  | 233 | case in rings which are not fields. The exact division operator | 
|---|
| [1197] | 234 | is assumed to be provided by the RING structure." | 
|---|
| [64] | 235 | (mapc #'(lambda (term) | 
|---|
|  | 236 | (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c))) | 
|---|
|  | 237 | (poly-termlist p)) | 
|---|
|  | 238 | p) | 
|---|
|  | 239 |  | 
|---|
|  | 240 | (defun poly-normalize-list (ring plist) | 
|---|
|  | 241 | "Divide every polynomial in a list PLIST by its leading coefficient. " | 
|---|
|  | 242 | (mapcar #'(lambda (x) (poly-normalize ring x)) plist)) | 
|---|