close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/division.lisp@ 1177

Last change on this file since 1177 was 1177, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 7.8 KB
RevLine 
[148]1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[459]22(defpackage "DIVISION"
[1177]23 (:use :cl :utils :ring :monomial :polynomial :grobner-debug :term :ring-and-order)
[470]24 (:export "$POLY_TOP_REDUCTION_ONLY"
25 "POLY-PSEUDO-DIVIDE"
[459]26 "POLY-EXACT-DIVIDE"
[491]27 "NORMAL-FORM-STEP"
[459]28 "NORMAL-FORM"
29 "POLY-NORMALIZE"
[472]30 "POLY-NORMALIZE-LIST"
[473]31 "BUCHBERGER-CRITERION"
[459]32 ))
[148]33
[460]34(in-package :division)
35
[469]36(defvar $poly_top_reduction_only nil
37 "If not FALSE, use top reduction only whenever possible.
38Top reduction means that division algorithm stops after the first reduction.")
39
[59]40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41;;
42;; An implementation of the division algorithm
43;;
44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
45
[1176]46(defun grobner-op (ring-and-order c1 c2 m f g
47 &aux
48 (ring (ro-ring ring-and-order)))
[59]49 "Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
50Assume that the leading terms will cancel."
51 #+grobner-check(funcall (ring-zerop ring)
52 (funcall (ring-sub ring)
53 (funcall (ring-mul ring) c2 (poly-lc f))
54 (funcall (ring-mul ring) c1 (poly-lc g))))
55 #+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
56 ;; Note that we can drop the leading terms of f ang g
[1176]57 (poly-sub ring-and-order
[59]58 (scalar-times-poly-1 ring c2 f)
59 (scalar-times-poly-1 ring c1 (monom-times-poly m g))))
60
61(defun poly-pseudo-divide (ring f fl)
62 "Pseudo-divide a polynomial F by the list of polynomials FL. Return
63multiple values. The first value is a list of quotients A. The second
64value is the remainder R. The third argument is a scalar coefficient
65C, such that C*F can be divided by FL within the ring of coefficients,
66which is not necessarily a field. Finally, the fourth value is an
67integer count of the number of reductions performed. The resulting
68objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
69 (declare (type poly f) (list fl))
70 (do ((r (make-poly-zero))
71 (c (funcall (ring-unit ring)))
72 (a (make-list (length fl) :initial-element (make-poly-zero)))
73 (division-count 0)
74 (p f))
75 ((poly-zerop p)
76 (debug-cgb "~&~3T~d reduction~:p" division-count)
77 (when (poly-zerop r) (debug-cgb " ---> 0"))
78 (values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
79 (declare (fixnum division-count))
80 (do ((fl fl (rest fl)) ;scan list of divisors
81 (b a (rest b)))
82 ((cond
83 ((endp fl) ;no division occurred
84 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
85 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
86 (pop (poly-termlist p)) ;remove lt(p) from p
87 t)
88 ((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
89 (incf division-count)
90 (multiple-value-bind (gcd c1 c2)
91 (funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
92 (declare (ignore gcd))
93 (let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
94 ;; Multiply the equation c*f=sum ai*fi+r+p by c1.
95 (mapl #'(lambda (x)
96 (setf (car x) (scalar-times-poly ring c1 (car x))))
97 a)
98 (setf r (scalar-times-poly ring c1 r)
99 c (funcall (ring-mul ring) c c1)
100 p (grobner-op ring c2 c1 m p (car fl)))
101 (push (make-term m c2) (poly-termlist (car b))))
102 t)))))))
103
104(defun poly-exact-divide (ring f g)
105 "Divide a polynomial F by another polynomial G. Assume that exact division
106with no remainder is possible. Returns the quotient."
107 (declare (type poly f g))
108 (multiple-value-bind (quot rem coeff division-count)
109 (poly-pseudo-divide ring f (list g))
110 (declare (ignore division-count coeff)
111 (list quot)
112 (type poly rem)
113 (type fixnum division-count))
114 (unless (poly-zerop rem) (error "Exact division failed."))
115 (car quot)))
116
117
118
119;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
120;;
121;; An implementation of the normal form
122;;
123;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124
125(defun normal-form-step (ring fl p r c division-count
126 &aux (g (find (poly-lm p) fl
127 :test #'monom-divisible-by-p
128 :key #'poly-lm)))
129 (cond
130 (g ;division possible
131 (incf division-count)
132 (multiple-value-bind (gcd cg cp)
133 (funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
134 (declare (ignore gcd))
135 (let ((m (monom-div (poly-lm p) (poly-lm g))))
136 ;; Multiply the equation c*f=sum ai*fi+r+p by cg.
137 (setf r (scalar-times-poly ring cg r)
138 c (funcall (ring-mul ring) c cg)
139 ;; p := cg*p-cp*m*g
140 p (grobner-op ring cp cg m p g))))
141 (debug-cgb "/"))
142 (t ;no division possible
143 (push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
144 (setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
145 (pop (poly-termlist p)) ;remove lt(p) from p
146 (debug-cgb "+")))
147 (values p r c division-count))
148
149;; Merge it sometime with poly-pseudo-divide
150(defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
151 ;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
152 #+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
153 (do ((r (make-poly-zero))
154 (c (funcall (ring-unit ring)))
155 (division-count 0))
156 ((or (poly-zerop f)
157 ;;(endp fl)
158 (and top-reduction-only (not (poly-zerop r))))
159 (progn
160 (debug-cgb "~&~3T~d reduction~:p" division-count)
161 (when (poly-zerop r)
162 (debug-cgb " ---> 0")))
163 (setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
164 (values f c division-count))
165 (declare (fixnum division-count)
166 (type poly r))
167 (multiple-value-setq (f r c division-count)
168 (normal-form-step ring fl f r c division-count))))
169
170(defun buchberger-criterion (ring g)
171 "Returns T if G is a Grobner basis, by using the Buchberger
172criterion: for every two polynomials h1 and h2 in G the S-polynomial
173S(h1,h2) reduces to 0 modulo G."
174 (every
175 #'poly-zerop
176 (makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
177 (i 0 (- (length g) 2))
178 (j (1+ i) (1- (length g))))))
[64]179
180
181(defun poly-normalize (ring p &aux (c (poly-lc p)))
182 "Divide a polynomial by its leading coefficient. It assumes
183that the division is possible, which may not always be the
184case in rings which are not fields. The exact division operator
[1176]185is assumed to be provided by the RING structure of the
[64]186lCOEFFICIENT-RING package."
187 (mapc #'(lambda (term)
188 (setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
189 (poly-termlist p))
190 p)
191
192(defun poly-normalize-list (ring plist)
193 "Divide every polynomial in a list PLIST by its leading coefficient. "
194 (mapcar #'(lambda (x) (poly-normalize ring x)) plist))
Note: See TracBrowser for help on using the repository browser.