| 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | (defpackage "BUCHBERGER" | 
|---|
| 23 | (:use :cl :grobner-debug | 
|---|
| 24 | :polynomial :division | 
|---|
| 25 | :criterion :pair-queue :priority-queue | 
|---|
| 26 | ) | 
|---|
| 27 | (:export "BUCHBERGER" "PARALLEL-BUCHBERGER") | 
|---|
| 28 | (:documentation "Buchberger Algorithm Implementation.")) | 
|---|
| 29 |  | 
|---|
| 30 | (in-package :buchberger) | 
|---|
| 31 |  | 
|---|
| 32 |  | 
|---|
| 33 | (defun buchberger (f | 
|---|
| 34 | &optional | 
|---|
| 35 | (start 0) | 
|---|
| 36 | (top-reduction-only $poly_top_reduction_only)) | 
|---|
| 37 | "An implementation of the Buchberger algorithm. Return Grobner basis | 
|---|
| 38 | of the ideal generated by the polynomial list F.  Polynomials 0 to | 
|---|
| 39 | START-1 are assumed to be a Grobner basis already, so that certain | 
|---|
| 40 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top | 
|---|
| 41 | reduction will be preformed. This function assumes that all polynomials | 
|---|
| 42 | in F are non-zero." | 
|---|
| 43 | (declare (type fixnum start)) | 
|---|
| 44 | (when (endp f) (return-from buchberger f)) ;cut startup costs | 
|---|
| 45 | (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM") | 
|---|
| 46 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start)) | 
|---|
| 47 | #+grobner-check (when (plusp start) | 
|---|
| 48 | (grobner-test (subseq f 0 start) (subseq f 0 start))) | 
|---|
| 49 | ;;Initialize critical pairs | 
|---|
| 50 | (let ((b (make-critical-pair-queue f start)) | 
|---|
| 51 | (b-done (make-hash-table :test #'equal))) | 
|---|
| 52 | (declare (type priority-queue b) (type hash-table b-done)) | 
|---|
| 53 | (dotimes (i (1- start)) | 
|---|
| 54 | (do ((j (1+ i) (1+ j))) ((>= j start)) | 
|---|
| 55 | (setf (gethash (list (elt f i) (elt f j)) b-done) t))) | 
|---|
| 56 | (do () | 
|---|
| 57 | ((pair-queue-empty-p b) | 
|---|
| 58 | #+grobner-check(grobner-test ring-and-order f f) | 
|---|
| 59 | (debug-cgb "~&GROBNER END") | 
|---|
| 60 | f) | 
|---|
| 61 | (let ((pair (pair-queue-remove b))) | 
|---|
| 62 | (declare (type pair pair)) | 
|---|
| 63 | (cond | 
|---|
| 64 | ((criterion-1 pair) nil) | 
|---|
| 65 | ((criterion-2 pair b-done f) nil) | 
|---|
| 66 | (t | 
|---|
| 67 | (let ((sp (normal-form ring-and-order | 
|---|
| 68 | (spoly ring-and-order | 
|---|
| 69 | (pair-first pair) | 
|---|
| 70 | (pair-second pair)) | 
|---|
| 71 | f top-reduction-only))) | 
|---|
| 72 | (declare (type poly sp)) | 
|---|
| 73 | (cond | 
|---|
| 74 | ((poly-zerop sp) | 
|---|
| 75 | nil) | 
|---|
| 76 | (t | 
|---|
| 77 | (setf sp (poly-primitive-part sp) | 
|---|
| 78 | f (nconc f (list sp))) | 
|---|
| 79 | ;; Add new critical pairs | 
|---|
| 80 | (dolist (h f) | 
|---|
| 81 | (pair-queue-insert b (make-pair h sp))) | 
|---|
| 82 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;" | 
|---|
| 83 | (pair-sugar pair) (length f) (pair-queue-size b) | 
|---|
| 84 | (hash-table-count b-done))))))) | 
|---|
| 85 | (setf (gethash (list (pair-first pair) (pair-second pair)) b-done) | 
|---|
| 86 | t))))) | 
|---|
| 87 |  | 
|---|
| 88 | (defun parallel-buchberger (f | 
|---|
| 89 | &optional | 
|---|
| 90 | (start 0) | 
|---|
| 91 | (top-reduction-only $poly_top_reduction_only)) | 
|---|
| 92 | "An implementation of the Buchberger algorithm. Return Grobner basis | 
|---|
| 93 | of the ideal generated by the polynomial list F.  Polynomials 0 to | 
|---|
| 94 | START-1 are assumed to be a Grobner basis already, so that certain | 
|---|
| 95 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top | 
|---|
| 96 | reduction will be preformed." | 
|---|
| 97 | (declare (ignore top-reduction-only) | 
|---|
| 98 | (type fixnum start)) | 
|---|
| 99 | (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs | 
|---|
| 100 | (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM") | 
|---|
| 101 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start)) | 
|---|
| 102 | #+grobner-check  (when (plusp start) | 
|---|
| 103 | (grobner-test (subseq f 0 start) (subseq f 0 start))) | 
|---|
| 104 | ;;Initialize critical pairs | 
|---|
| 105 | (let ((b (pair-queue-initialize (make-pair-queue) f start)) | 
|---|
| 106 | (b-done (make-hash-table :test #'equal))) | 
|---|
| 107 | (declare (type priority-queue b) | 
|---|
| 108 | (type hash-table b-done)) | 
|---|
| 109 | (dotimes (i (1- start)) | 
|---|
| 110 | (do ((j (1+ i) (1+ j))) ((>= j start)) | 
|---|
| 111 | (declare (type fixnum j)) | 
|---|
| 112 | (setf (gethash (list (elt f i) (elt f j)) b-done) t))) | 
|---|
| 113 | (do () | 
|---|
| 114 | ((pair-queue-empty-p b) | 
|---|
| 115 | #+grobner-check(grobner-test f f) | 
|---|
| 116 | (debug-cgb "~&GROBNER END") | 
|---|
| 117 | f) | 
|---|
| 118 | (let ((pair (pair-queue-remove b))) | 
|---|
| 119 | (when (null (pair-division-data pair)) | 
|---|
| 120 | (setf (pair-division-data pair) (list (s-polynomial | 
|---|
| 121 | (pair-first pair) | 
|---|
| 122 | (pair-second pair)) | 
|---|
| 123 | (make-poly-zero) | 
|---|
| 124 | (funcall (ring-unit ring)) | 
|---|
| 125 | 0))) | 
|---|
| 126 | (cond | 
|---|
| 127 | ((criterion-1 pair) nil) | 
|---|
| 128 | ((criterion-2 pair b-done f) nil) | 
|---|
| 129 | (t | 
|---|
| 130 | (let* ((dd (pair-division-data pair)) | 
|---|
| 131 | (p (first dd)) | 
|---|
| 132 | (sp (second dd)) | 
|---|
| 133 | (c (third dd)) | 
|---|
| 134 | (division-count (fourth dd))) | 
|---|
| 135 | (cond | 
|---|
| 136 | ((poly-zerop p)          ;normal form completed | 
|---|
| 137 | (debug-cgb "~&~3T~d reduction~:p" division-count) | 
|---|
| 138 | (cond | 
|---|
| 139 | ((poly-zerop sp) | 
|---|
| 140 | (debug-cgb " ---> 0") | 
|---|
| 141 | nil) | 
|---|
| 142 | (t | 
|---|
| 143 | (setf sp (poly-nreverse sp) | 
|---|
| 144 | sp (poly-primitive-part ring sp) | 
|---|
| 145 | f (nconc f (list sp))) | 
|---|
| 146 | ;; Add new critical pairs | 
|---|
| 147 | (dolist (h f) | 
|---|
| 148 | (pair-queue-insert b (make-pair h sp))) | 
|---|
| 149 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;" | 
|---|
| 150 | (pair-sugar pair) (length f) (pair-queue-size b) | 
|---|
| 151 | (hash-table-count b-done)))) | 
|---|
| 152 | (setf (gethash (list (pair-first pair) (pair-second pair)) | 
|---|
| 153 | b-done) t)) | 
|---|
| 154 | (t                               ;normal form not complete | 
|---|
| 155 | (do () | 
|---|
| 156 | ((cond | 
|---|
| 157 | ((> (poly-sugar sp) (pair-sugar pair)) | 
|---|
| 158 | (debug-cgb "(~a)?" (poly-sugar sp)) | 
|---|
| 159 | t) | 
|---|
| 160 | ((poly-zerop p) | 
|---|
| 161 | (debug-cgb ".") | 
|---|
| 162 | t) | 
|---|
| 163 | (t nil)) | 
|---|
| 164 | (setf (first dd) p | 
|---|
| 165 | (second dd) sp | 
|---|
| 166 | (third dd) c | 
|---|
| 167 | (fourth dd) division-count | 
|---|
| 168 | (pair-sugar pair) (poly-sugar sp)) | 
|---|
| 169 | (pair-queue-insert b pair)) | 
|---|
| 170 | (multiple-value-setq (p sp c division-count) | 
|---|
| 171 | (normal-form-step ring-and-order f p sp c division-count)))))))))))) | 
|---|