[61] | 1 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2 | ;;
|
---|
| 3 | ;; Buchberger Algorithm Implementation
|
---|
| 4 | ;;
|
---|
| 5 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 6 |
|
---|
| 7 | (defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 8 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
| 9 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
| 10 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
| 11 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
| 12 | reduction will be preformed. This function assumes that all polynomials
|
---|
| 13 | in F are non-zero."
|
---|
| 14 | (declare (type fixnum start))
|
---|
| 15 | (when (endp f) (return-from buchberger f)) ;cut startup costs
|
---|
| 16 | (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
|
---|
| 17 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
| 18 | #+grobner-check (when (plusp start)
|
---|
| 19 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
| 20 | ;;Initialize critical pairs
|
---|
| 21 | (let ((b (pair-queue-initialize (make-pair-queue)
|
---|
| 22 | f start))
|
---|
| 23 | (b-done (make-hash-table :test #'equal)))
|
---|
| 24 | (declare (type priority-queue b) (type hash-table b-done))
|
---|
| 25 | (dotimes (i (1- start))
|
---|
| 26 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
| 27 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
| 28 | (do ()
|
---|
| 29 | ((pair-queue-empty-p b)
|
---|
| 30 | #+grobner-check(grobner-test ring f f)
|
---|
| 31 | (debug-cgb "~&GROBNER END")
|
---|
| 32 | f)
|
---|
| 33 | (let ((pair (pair-queue-remove b)))
|
---|
| 34 | (declare (type pair pair))
|
---|
| 35 | (cond
|
---|
| 36 | ((criterion-1 pair) nil)
|
---|
| 37 | ((criterion-2 pair b-done f) nil)
|
---|
| 38 | (t
|
---|
| 39 | (let ((sp (normal-form ring (spoly ring (pair-first pair)
|
---|
| 40 | (pair-second pair))
|
---|
| 41 | f top-reduction-only)))
|
---|
| 42 | (declare (type poly sp))
|
---|
| 43 | (cond
|
---|
| 44 | ((poly-zerop sp)
|
---|
| 45 | nil)
|
---|
| 46 | (t
|
---|
| 47 | (setf sp (poly-primitive-part ring sp)
|
---|
| 48 | f (nconc f (list sp)))
|
---|
| 49 | ;; Add new critical pairs
|
---|
| 50 | (dolist (h f)
|
---|
| 51 | (pair-queue-insert b (make-pair h sp)))
|
---|
| 52 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
| 53 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
| 54 | (hash-table-count b-done)))))))
|
---|
| 55 | (setf (gethash (list (pair-first pair) (pair-second pair)) b-done)
|
---|
| 56 | t)))))
|
---|
| 57 |
|
---|
| 58 | (defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
|
---|
| 59 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
| 60 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
| 61 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
| 62 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
| 63 | reduction will be preformed."
|
---|
| 64 | (declare (ignore top-reduction-only)
|
---|
| 65 | (type fixnum start))
|
---|
| 66 | (when (endp f) (return-from parallel-buchberger f)) ;cut startup costs
|
---|
| 67 | (debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")
|
---|
| 68 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
| 69 | #+grobner-check (when (plusp start)
|
---|
| 70 | (grobner-test ring (subseq f 0 start) (subseq f 0 start)))
|
---|
| 71 | ;;Initialize critical pairs
|
---|
| 72 | (let ((b (pair-queue-initialize (make-pair-queue) f start))
|
---|
| 73 | (b-done (make-hash-table :test #'equal)))
|
---|
| 74 | (declare (type priority-queue b)
|
---|
| 75 | (type hash-table b-done))
|
---|
| 76 | (dotimes (i (1- start))
|
---|
| 77 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
| 78 | (declare (type fixnum j))
|
---|
| 79 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
| 80 | (do ()
|
---|
| 81 | ((pair-queue-empty-p b)
|
---|
| 82 | #+grobner-check(grobner-test ring f f)
|
---|
| 83 | (debug-cgb "~&GROBNER END")
|
---|
| 84 | f)
|
---|
| 85 | (let ((pair (pair-queue-remove b)))
|
---|
| 86 | (when (null (pair-division-data pair))
|
---|
| 87 | (setf (pair-division-data pair) (list (spoly ring
|
---|
| 88 | (pair-first pair)
|
---|
| 89 | (pair-second pair))
|
---|
| 90 | (make-poly-zero)
|
---|
| 91 | (funcall (ring-unit ring))
|
---|
| 92 | 0)))
|
---|
| 93 | (cond
|
---|
| 94 | ((criterion-1 pair) nil)
|
---|
| 95 | ((criterion-2 pair b-done f) nil)
|
---|
| 96 | (t
|
---|
| 97 | (let* ((dd (pair-division-data pair))
|
---|
| 98 | (p (first dd))
|
---|
| 99 | (sp (second dd))
|
---|
| 100 | (c (third dd))
|
---|
| 101 | (division-count (fourth dd)))
|
---|
| 102 | (cond
|
---|
| 103 | ((poly-zerop p) ;normal form completed
|
---|
| 104 | (debug-cgb "~&~3T~d reduction~:p" division-count)
|
---|
| 105 | (cond
|
---|
| 106 | ((poly-zerop sp)
|
---|
| 107 | (debug-cgb " ---> 0")
|
---|
| 108 | nil)
|
---|
| 109 | (t
|
---|
| 110 | (setf sp (poly-nreverse sp)
|
---|
| 111 | sp (poly-primitive-part ring sp)
|
---|
| 112 | f (nconc f (list sp)))
|
---|
| 113 | ;; Add new critical pairs
|
---|
| 114 | (dolist (h f)
|
---|
| 115 | (pair-queue-insert b (make-pair h sp)))
|
---|
| 116 | (debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
| 117 | (pair-sugar pair) (length f) (pair-queue-size b)
|
---|
| 118 | (hash-table-count b-done))))
|
---|
| 119 | (setf (gethash (list (pair-first pair) (pair-second pair))
|
---|
| 120 | b-done) t))
|
---|
| 121 | (t ;normal form not complete
|
---|
| 122 | (do ()
|
---|
| 123 | ((cond
|
---|
| 124 | ((> (poly-sugar sp) (pair-sugar pair))
|
---|
| 125 | (debug-cgb "(~a)?" (poly-sugar sp))
|
---|
| 126 | t)
|
---|
| 127 | ((poly-zerop p)
|
---|
| 128 | (debug-cgb ".")
|
---|
| 129 | t)
|
---|
| 130 | (t nil))
|
---|
| 131 | (setf (first dd) p
|
---|
| 132 | (second dd) sp
|
---|
| 133 | (third dd) c
|
---|
| 134 | (fourth dd) division-count
|
---|
| 135 | (pair-sugar pair) (poly-sugar sp))
|
---|
| 136 | (pair-queue-insert b pair))
|
---|
| 137 | (multiple-value-setq (p sp c division-count)
|
---|
| 138 | (normal-form-step ring f p sp c division-count))))))))))))
|
---|