[1201] | 1 | ;;; -*- Mode: Lisp -*-
|
---|
[302] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[309] | 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 23 | ;;
|
---|
[355] | 24 | ;; Run tests using 5am unit testing framework
|
---|
[309] | 25 | ;;
|
---|
| 26 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 27 |
|
---|
[342] | 28 | ;; We assume that QuickLisp package manager is installed.
|
---|
| 29 | ;; See :
|
---|
| 30 | ;; https://www.quicklisp.org/beta/
|
---|
| 31 | ;;
|
---|
| 32 |
|
---|
| 33 | ;; The following is unnecessary after running:
|
---|
| 34 | ;; * (ql:add-to-init-file)
|
---|
| 35 | ;; at lisp prompt:
|
---|
| 36 | ;;(load "~/quicklisp/setup")
|
---|
| 37 |
|
---|
[286] | 38 | (ql:quickload :fiveam)
|
---|
[301] | 39 |
|
---|
[292] | 40 | (load "ngrobner.asd")
|
---|
[291] | 41 | (asdf:load-system :ngrobner)
|
---|
[1326] | 42 |
|
---|
[367] | 43 | (defpackage #:ngrobner-tests
|
---|
[604] | 44 | (:use :cl :it.bese.fiveam
|
---|
| 45 | :ngrobner :priority-queue :monomial
|
---|
[957] | 46 | :utils :order :ring :term :ring-and-order
|
---|
[1069] | 47 | :termlist :polynomial
|
---|
[1024] | 48 | :priority-queue
|
---|
[1175] | 49 | :division
|
---|
[1364] | 50 | :grobner-wrap
|
---|
[604] | 51 | )
|
---|
| 52 | )
|
---|
[286] | 53 |
|
---|
[1251] | 54 | (in-package :ngrobner-tests)
|
---|
[287] | 55 |
|
---|
[367] | 56 | (def-suite ngrobner-suite
|
---|
[368] | 57 | :description "New Groebner Package Suite")
|
---|
[281] | 58 |
|
---|
[367] | 59 | (in-suite ngrobner-suite)
|
---|
[287] | 60 |
|
---|
[312] | 61 | #+nil
|
---|
[289] | 62 | (test dummy-test
|
---|
[281] | 63 | "Makelist"
|
---|
| 64 | (is (= (+ 2 2)) "2 plus 2 wasn't equal to 4 (using #'= to test equality)")
|
---|
| 65 | (is (= 0 (+ -1 1)))
|
---|
| 66 | (signals
|
---|
| 67 | (error "Trying to add 4 to FOO didn't signal an error")
|
---|
| 68 | (+ 'foo 4))
|
---|
| 69 | (is (= 0 (+ 1 1)) "this should have failed"))
|
---|
[289] | 70 |
|
---|
[293] | 71 | (test makelist-1
|
---|
[303] | 72 | "makelist-1 test"
|
---|
[597] | 73 | (is (equal (makelist-1 (* 2 i) i 0 10) '(0 2 4 6 8 10 12 14 16 18 20)))
|
---|
| 74 | (is (equal (makelist-1 (* 2 i) i 0 10 3) '(0 6 12 18))))
|
---|
[294] | 75 |
|
---|
[303] | 76 | (test makelist
|
---|
[314] | 77 | "makelist"
|
---|
[598] | 78 | (is (equal (makelist (+ (* i i) (* j j)) (i 1 4) (j 1 i)) '(2 5 8 10 13 18 17 20 25 32)))
|
---|
| 79 | (is (equal (makelist (list i j '---> (+ (* i i) (* j j))) (i 1 4) (j 1 i))
|
---|
[303] | 80 | '((1 1 ---> 2) (2 1 ---> 5) (2 2 ---> 8) (3 1 ---> 10) (3 2 ---> 13)
|
---|
| 81 | (3 3 ---> 18) (4 1 ---> 17) (4 2 ---> 20) (4 3 ---> 25) (4 4 ---> 32)))))
|
---|
[290] | 82 |
|
---|
[1414] | 83 | (test summation
|
---|
| 84 | "summation"
|
---|
| 85 | (is (= (summation i (i 0 100)) 5050)))
|
---|
| 86 |
|
---|
[1415] | 87 | (test inner-product
|
---|
| 88 | "summation"
|
---|
| 89 | (is (= (inner-product '(1 2 3) '(4 5 6)) 32)))
|
---|
| 90 |
|
---|
[314] | 91 | (test monom
|
---|
| 92 | "monom"
|
---|
[885] | 93 | (is (every #'= (make-monom :dimension 3) '(0 0 0)) "Trivial monomial is a vector of 0's")
|
---|
| 94 | (is (every #'= (make-monom :initial-exponents '(1 2 3)) '(1 2 3)) "Monomial with powers 1,2,3")
|
---|
[867] | 95 | (let ((p (make-monom :initial-exponents '(1 2 3))))
|
---|
[885] | 96 | (is (every #'= (monom-map (lambda (x) x) p) '(1 2 3)))))
|
---|
[867] | 97 |
|
---|
[303] | 98 |
|
---|
[347] | 99 | (test order
|
---|
| 100 | "order"
|
---|
[948] | 101 | (let ((p (make-monom :initial-exponents '(1 3 2)))
|
---|
| 102 | (q (make-monom :initial-exponents '(1 2 3))))
|
---|
[600] | 103 | (is-true (lex> p q))
|
---|
| 104 | (is-true (grlex> p q))
|
---|
| 105 | (is-true (revlex> p q))
|
---|
| 106 | (is-true (grevlex> p q))
|
---|
[948] | 107 | (is-false (invlex> p q))))
|
---|
| 108 |
|
---|
| 109 | (test elim-order
|
---|
| 110 | "elimination order"
|
---|
| 111 | (let* ((p (make-monom :initial-exponents '(1 2 3)))
|
---|
| 112 | (q (make-monom :initial-exponents '(4 5 6)))
|
---|
| 113 | (elim-order-factory (make-elimination-order-factory))
|
---|
| 114 | (elim-order-1 (funcall elim-order-factory 1))
|
---|
| 115 | (elim-order-2 (funcall elim-order-factory 2)))
|
---|
[949] | 116 | (is-false (funcall elim-order-1 p q))
|
---|
| 117 | (is-false (funcall elim-order-2 p q))))
|
---|
[347] | 118 |
|
---|
[381] | 119 | (test term
|
---|
| 120 | "term"
|
---|
[855] | 121 | (let* ((m1 (make-monom :initial-exponents '(1 2 3)))
|
---|
| 122 | (m2 (make-monom :initial-exponents '(3 5 2)))
|
---|
[602] | 123 | (m3 (monom-mul m1 m2))
|
---|
| 124 | (t1 (make-term m1 7))
|
---|
| 125 | (t2 (make-term m2 9))
|
---|
| 126 | (t3 (make-term m3 (* 7 9))))
|
---|
| 127 | (is (equalp (term-mul *ring-of-integers* t1 t2) t3))))
|
---|
[381] | 128 |
|
---|
[950] | 129 | (test termlist
|
---|
| 130 | "termlist"
|
---|
[968] | 131 | (let* ((t1 (make-term (make-monom :initial-exponents '(1 2 3)) 7))
|
---|
[966] | 132 | (t2 (make-term (make-monom :initial-exponents '(3 5 2)) 9))
|
---|
[967] | 133 | (t11 (make-term (make-monom :initial-exponents '(2 4 6)) 49))
|
---|
[963] | 134 | (t12 (make-term (make-monom :initial-exponents '(4 7 5)) 126))
|
---|
| 135 | (t22 (make-term (make-monom :initial-exponents '(6 10 4)) 81))
|
---|
| 136 | (p (list t2 t1))
|
---|
| 137 | (p-sq (list t22 t12 t11))
|
---|
[956] | 138 | (ring-and-order (make-ring-and-order))
|
---|
| 139 | (q (termlist-expt ring-and-order p 2)))
|
---|
[969] | 140 | (is-true (equalp q p-sq))))
|
---|
[950] | 141 |
|
---|
[970] | 142 | (test poly
|
---|
| 143 | "poly"
|
---|
| 144 | (let* ((t1 (make-term (make-monom :initial-exponents '(1 2 3)) 7))
|
---|
| 145 | (t2 (make-term (make-monom :initial-exponents '(3 5 2)) 9))
|
---|
| 146 | (t11 (make-term (make-monom :initial-exponents '(2 4 6)) 49))
|
---|
| 147 | (t12 (make-term (make-monom :initial-exponents '(4 7 5)) 126))
|
---|
| 148 | (t22 (make-term (make-monom :initial-exponents '(6 10 4)) 81))
|
---|
| 149 | (p (make-poly-from-termlist (list t2 t1)))
|
---|
| 150 | (p-sq (make-poly-from-termlist (list t22 t12 t11)))
|
---|
| 151 | (ring-and-order (make-ring-and-order))
|
---|
[1027] | 152 | (q (poly-expt ring-and-order p 2)))
|
---|
[972] | 153 | (is-true (equalp q p-sq))))
|
---|
[950] | 154 |
|
---|
| 155 |
|
---|
[381] | 156 | (test coerce-to-infix
|
---|
[582] | 157 | "Conversion to infix form"
|
---|
| 158 | (is (equal
|
---|
[605] | 159 | (coerce-to-infix :term (make-term-variable *ring-of-integers* 5 3) '(x y z w u v))
|
---|
[582] | 160 | '(* 1 (EXPT X 0) (EXPT Y 0) (EXPT Z 0) (EXPT W 1) (EXPT U 0)))))
|
---|
[381] | 161 |
|
---|
[584] | 162 | (test priority-queue
|
---|
| 163 | "Priority queue"
|
---|
[607] | 164 | (let ((q (make-priority-queue)))
|
---|
| 165 | (priority-queue-insert q 7)
|
---|
| 166 | (priority-queue-insert q 8)
|
---|
| 167 | (is (= (priority-queue-size q) 3) "Note that there is always a dummy element in the queue.")
|
---|
| 168 | (is (equalp (priority-queue-heap q) #(0 7 8)))
|
---|
| 169 | (is (= (priority-queue-remove q) 7))
|
---|
| 170 | (is (= (priority-queue-remove q) 8))
|
---|
[610] | 171 | (is-true (priority-queue-empty-p q))
|
---|
[613] | 172 | (signals
|
---|
| 173 | (error "Empty queue.")
|
---|
| 174 | (priority-queue-remove q))))
|
---|
[584] | 175 |
|
---|
[634] | 176 | ;;
|
---|
| 177 | ;; Currently parser cannot be tested, as it relies on many maxima functions
|
---|
| 178 | ;; to parse a polynomial expression.
|
---|
| 179 | ;;
|
---|
[614] | 180 | #|
|
---|
| 181 | (test parser
|
---|
| 182 | "Parser"
|
---|
| 183 | (let (($f '((MLIST SIMP) ((MPLUS SIMP) $X ((MTIMES SIMP) -1 $Y)) ((MPLUS SIMP) $X $Y)))
|
---|
[620] | 184 | ($v '((MLIST SIMP) $X $Y)))
|
---|
| 185 | (is-true (parse-poly-list $f $v))))
|
---|
[633] | 186 | |#
|
---|
[614] | 187 |
|
---|
[691] | 188 | (test infix-print
|
---|
[694] | 189 | "Infix printer"
|
---|
[691] | 190 | (is (string= (infix-print '(+ x y) nil) "X+Y"))
|
---|
| 191 | (is (string= (infix-print '(expt x 3) nil) "X^3"))
|
---|
[693] | 192 | (is (string= (infix-print '(+ 1 (expt x 3)) nil) "1+(X^3)"))
|
---|
| 193 | (is (string= (infix-print '(* x y) nil) "X*Y"))
|
---|
| 194 | (is (string= (infix-print '(* x (expt y 2)) nil) "X*(Y^2)")))
|
---|
[832] | 195 |
|
---|
| 196 | (test infix
|
---|
| 197 | "Infix parser"
|
---|
[693] | 198 | (is (equal '#I( x^2 + y^2 ) '(+ (expt x 2) (expt y 2))))
|
---|
[831] | 199 | (is (equal '#I( [ x, y ] ) '(:[ X Y)))
|
---|
| 200 | (is (equal '#I( x + y) '(+ x y)))
|
---|
[864] | 201 | (is (equal '#I( x^3 ) '(expt x 3)))
|
---|
| 202 | (is (equal '#I( 1 + x^3) '(+ 1 (expt x 3))))
|
---|
| 203 | (is (equal '#I( x * y^2 ) '(* x (expt y 2)))))
|
---|
[691] | 204 |
|
---|
[1070] | 205 | (test poly-reader
|
---|
| 206 | "Polynomial reader"
|
---|
[1084] | 207 | (is (equalp (with-input-from-string (s "X^2-Y^2+(-4/3)*U^2*W^3-5")
|
---|
[1089] | 208 | (read-infix-form :stream s))
|
---|
[1083] | 209 | '(+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))))
|
---|
[1167] | 210 | (is (equalp (string->alist "X^2-Y^2+(-4/3)*U^2*W^3-5" '(x y u w))
|
---|
| 211 | '(((2 0 0 0) . 1)
|
---|
| 212 | ((0 2 0 0) . -1)
|
---|
| 213 | ((0 0 2 3) . -4/3)
|
---|
| 214 | ((0 0 0 0) . -5))))
|
---|
[1173] | 215 | (is (equalp (string->alist "[x^2-y^2+(-4/3)*u^2*w^3-5,y]" '(x y u w))
|
---|
| 216 | '(:[
|
---|
| 217 | (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
|
---|
| 218 | (((0 1 0 0) . 1)))))
|
---|
[1099] | 219 | (let ((p (make-poly-from-termlist (list (make-term (make-monom :initial-exponents '(2 0)) 1)
|
---|
| 220 | (make-term (make-monom :initial-exponents '(0 2)) 2)))))
|
---|
[1101] | 221 | (is (equalp (with-input-from-string (s "x^2+2*y^2")
|
---|
| 222 | (read-poly '(x y) :stream s))
|
---|
| 223 | p))
|
---|
[1103] | 224 | (is (equalp (string->poly "x^2+2*y^2" '(x y)) p))))
|
---|
[1023] | 225 |
|
---|
[1223] | 226 | ;; Manual calculation supporting the test below.
|
---|
| 227 | ;; We divide X^2 by [X+Y,X-2*Y] with LEX> as order.
|
---|
| 228 | ;; LM(X^2)=X^2 is divisible by LM(X+Y)=X so the first partial quotient is X.
|
---|
| 229 | ;; Next, X^2 - X*(X+Y) = -X*Y.
|
---|
[1224] | 230 | ;; LM(-X*Y)=X*Y is divibile by LM(X+Y)=X so the second partial quotient is -Y.
|
---|
[1281] | 231 | ;; Next, -X*Y-(-Y)*(X+Y) = Y^2.
|
---|
| 232 | ;; LM(Y^2)=Y^2 is not divisible by LM(X+Y)=X or LM(X-2*Y)=X. Hence, division
|
---|
| 233 | ;; ends. The list of quotients is [X-Y,0]. The remainder is Y^2
|
---|
[1174] | 234 | (test division
|
---|
| 235 | "Division in polynomial ring"
|
---|
[1183] | 236 | (let* ((f (string->poly "x^2" '(x y)))
|
---|
[1186] | 237 | (y-sq (string->poly "y^2" '(x y)))
|
---|
[1183] | 238 | (fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
| 239 | (ring *ring-of-integers*)
|
---|
| 240 | (order #'lex>)
|
---|
[1194] | 241 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
| 242 | (quotients (cdr (string->poly "[x-y,0]" '(x y)))))
|
---|
[1250] | 243 | (is (equalp (multiple-value-list (normal-form ring-and-order f fl)) (list y-sq 1 2)))
|
---|
[1196] | 244 | (is (equalp (multiple-value-list (poly-pseudo-divide ring-and-order f fl))
|
---|
[1202] | 245 | (list quotients y-sq 1 2)))
|
---|
[1283] | 246 | (is-false (buchberger-criterion ring-and-order fl)))
|
---|
[1287] | 247 | (let* ((f (string->poly "x^2-4*y^2" '(x y)))
|
---|
| 248 | (g (string->poly "x+2*y" '(x y)))
|
---|
| 249 | (h (string->poly "x-2*y" '(x y)))
|
---|
[1286] | 250 | (ring *ring-of-integers*)
|
---|
| 251 | (order #'lex>)
|
---|
| 252 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
---|
[1449] | 253 | (is (poly-equal-no-sugar-p (poly-exact-divide ring-and-order f g) h))))
|
---|
[1174] | 254 |
|
---|
[1303] | 255 |
|
---|
| 256 | (test buchberger
|
---|
| 257 | "Buchberger algorithm"
|
---|
| 258 | (let* ((fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
| 259 | (ring *ring-of-integers*)
|
---|
| 260 | (order #'lex>)
|
---|
| 261 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1306] | 262 | (gb (cdr (string->poly "[x+y,x-2*y,y]" '(x y)))))
|
---|
[1324] | 263 | (is-true (grobner-test ring-and-order gb fl))
|
---|
[1448] | 264 | (is (every #'poly-equal-no-sugar-p (buchberger ring-and-order fl) gb))
|
---|
| 265 | (is (every #'poly-equal-no-sugar-p (parallel-buchberger ring-and-order fl) gb))))
|
---|
[1303] | 266 |
|
---|
[1318] | 267 | (test gebauer-moeller
|
---|
| 268 | "Gebauer-Moeller algorithm"
|
---|
| 269 | (let* ((fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
| 270 | (ring *ring-of-integers*)
|
---|
| 271 | (order #'lex>)
|
---|
| 272 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1322] | 273 | (gb (cdr (string->poly "[y,x-2*y]" '(x y)))))
|
---|
[1324] | 274 | (is-true (grobner-test ring-and-order gb fl))
|
---|
[1447] | 275 | (is (every #'poly-equal-no-sugar-p (gebauer-moeller ring-and-order fl) gb))))
|
---|
[1303] | 276 |
|
---|
[1548] | 277 | (test reduction
|
---|
| 278 | "Reduction algorithm"
|
---|
[1550] | 279 | (let* ((fl (cdr (string->poly "[x^2,x+y,x-2*y]" '(x y))))
|
---|
[1336] | 280 | (ring *ring-of-integers*)
|
---|
| 281 | (order #'lex>)
|
---|
| 282 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1337] | 283 | (gb (cdr (string->poly "[y,x-2*y]" '(x y))))
|
---|
[1339] | 284 | (reduced-gb (cdr (string->poly "[y,x]" '(x y)))))
|
---|
[1336] | 285 | (is-true (grobner-test ring-and-order gb fl))
|
---|
[1554] | 286 | (is (null (set-exclusive-or (print (reduction ring-and-order gb))
|
---|
[1555] | 287 | (print reduced-gb)
|
---|
[1556] | 288 | :test #'poly-equal-no-sugar-p)))))
|
---|
[1303] | 289 |
|
---|
[1548] | 290 | (test minimization
|
---|
| 291 | "Minimization algorithm"
|
---|
| 292 | (let* ((gb (cdr (string->poly "[x,y,x-2*y,x^2]" '(x y))))
|
---|
| 293 | (minimal-gb (cdr (string->poly "[y,x-2*y]" '(x y)))))
|
---|
| 294 | (is (equalp (minimization gb) minimal-gb))))
|
---|
| 295 |
|
---|
[1365] | 296 | (test grobner-wrap
|
---|
[1366] | 297 | "Grobner interface to many algorithms"
|
---|
[1368] | 298 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
[1367] | 299 | (fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
[1365] | 300 | (ring *ring-of-integers*)
|
---|
| 301 | (order #'lex>)
|
---|
| 302 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1371] | 303 | (gb (cdr (string->poly "[x+y,x-2*y,y]" '(x y))))
|
---|
[1372] | 304 | (reduced-gb (cdr (string->poly "[y,x]" '(x y)))))
|
---|
[1365] | 305 | (is-true (grobner-test ring-and-order gb fl))
|
---|
[1562] | 306 | (is (poly-set-equal-no-sugar-p (grobner ring-and-order fl) gb))
|
---|
| 307 | (is (poly-set-equal-no-sugar-p (reduced-grobner ring-and-order fl) reduced-gb))))
|
---|
[1336] | 308 |
|
---|
[1562] | 309 |
|
---|
[1422] | 310 | (test elimination-ideal
|
---|
| 311 | "Elimination ideal"
|
---|
[1417] | 312 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
| 313 | (fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
| 314 | (ring *ring-of-integers*)
|
---|
| 315 | (order #'lex>)
|
---|
[1418] | 316 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1419] | 317 | (elim-1-fl (cdr (string->poly "[y]" '(x y)))))
|
---|
[1562] | 318 | (is (poly-set-equal-no-sugar-p (elimination-ideal ring-and-order fl 1) elim-1-fl))
|
---|
[1563] | 319 | (is (null (elimination-ideal ring-and-order fl 2)))))
|
---|
[1416] | 320 |
|
---|
[1425] | 321 | (test colon-ideal
|
---|
[1434] | 322 | "Colon ideal"
|
---|
[1425] | 323 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
| 324 | (I (cdr (string->poly "[x^2*y,x*y^2]" '(x y))))
|
---|
| 325 | (J (cdr (string->poly "[x,y]" '(x y))))
|
---|
| 326 | (ring *ring-of-integers*)
|
---|
| 327 | (order #'lex>)
|
---|
| 328 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1438] | 329 | (I-colon-J (cdr (string->poly "[x*y]" '(x y)))))
|
---|
[1564] | 330 | (is (poly-set-equal-no-sugar-p (colon-ideal ring-and-order I J) I-colon-J))))
|
---|
[1425] | 331 |
|
---|
[1457] | 332 | (test poly-lcm
|
---|
| 333 | "Polynomial LCM"
|
---|
[1450] | 334 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
[1451] | 335 | (f (string->poly "x^2-y^2" '(x y)))
|
---|
[1458] | 336 | (g (string->poly "(x+y)^2" '(x y)))
|
---|
[1450] | 337 | (ring *ring-of-integers*)
|
---|
| 338 | (order #'lex>)
|
---|
| 339 | (ring-and-order (make-ring-and-order :ring ring :order order))
|
---|
[1457] | 340 | (lcm-f-and-g (string->poly "(x+y)^2*(x-y)" '(x y))))
|
---|
| 341 | (is (poly-equal-no-sugar-p (poly-lcm ring-and-order f g) lcm-f-and-g))))
|
---|
[1437] | 342 |
|
---|
[1460] | 343 | (test grobner-member
|
---|
[1461] | 344 | "Ideal membership"
|
---|
[1460] | 345 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
| 346 | (f (string->poly "y" '(x y)))
|
---|
[1464] | 347 | (fl (cdr (string->poly "[x-y,x+y,y]" '(x y))))
|
---|
[1460] | 348 | (ring *ring-of-integers*)
|
---|
| 349 | (order #'lex>)
|
---|
| 350 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
---|
[1463] | 351 | (is-true (buchberger-criterion ring-and-order fl))
|
---|
[1461] | 352 | (is-true (grobner-member ring-and-order f fl))))
|
---|
[1460] | 353 |
|
---|
[1459] | 354 | (test grobner-equal
|
---|
[1465] | 355 | "Equality of ideal generated by Groebner bases"
|
---|
[1459] | 356 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
[1466] | 357 | (fl (cdr (string->poly "[x,x-y,y]" '(x y))))
|
---|
| 358 | (gl (cdr (string->poly "[x-y,x+2*y,y]" '(x y))))
|
---|
[1459] | 359 | (ring *ring-of-integers*)
|
---|
| 360 | (order #'lex>)
|
---|
| 361 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
---|
[1465] | 362 | (is-true (buchberger-criterion ring-and-order fl))
|
---|
| 363 | (is-true (buchberger-criterion ring-and-order gl))
|
---|
| 364 | (is-true (grobner-equal ring-and-order fl gl))))
|
---|
[1450] | 365 |
|
---|
[1498] | 366 | ;; Calculates [F, U*P-1]
|
---|
[1496] | 367 | (test saturation-extension-1
|
---|
[1489] | 368 | "Saturation extension with 1 polynomial"
|
---|
[1482] | 369 | (let* ((F-str "[x^3,x^2*y]")
|
---|
| 370 | (F (cdr (string->poly F-str '(x y))))
|
---|
[1478] | 371 | (P (string->poly "x^2" '(x y)))
|
---|
[1482] | 372 | (ring *ring-of-integers*)
|
---|
[1498] | 373 | (F-sat (append (cdr (string->poly F-str '(u x y)))
|
---|
| 374 | (cdr (string->poly "[u*x^2-1]" '(u x y))))))
|
---|
[1484] | 375 | (is (every #'poly-equal-no-sugar-p
|
---|
[1486] | 376 | (saturation-extension-1 ring F p)
|
---|
[1496] | 377 | F-sat))))
|
---|
| 378 |
|
---|
[1505] | 379 | ;; Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F.
|
---|
[1499] | 380 | (test polysaturation-extension
|
---|
[1501] | 381 | "Polysaturation extension"
|
---|
[1496] | 382 | (let* ((F-str "[x^3,x^2*y]")
|
---|
| 383 | (F (cdr (string->poly F-str '(x y))))
|
---|
[1498] | 384 | (P (cdr (string->poly "[x^2,x*y]" '(x y))))
|
---|
[1496] | 385 | (ring *ring-of-integers*)
|
---|
[1502] | 386 | (F-sat (append (cdr (string->poly F-str '(u1 u2 x y)))
|
---|
[1505] | 387 | (cdr (string->poly "[u1*(x^2) + u2*(x*y)-1]" '(u1 u2 x y))))))
|
---|
[1489] | 388 | (is (every #'poly-equal-no-sugar-p
|
---|
[1506] | 389 | (polysaturation-extension ring F P)
|
---|
| 390 | F-sat))))
|
---|
[1478] | 391 |
|
---|
[1531] | 392 | ;; Calculate F : p^inf
|
---|
[1537] | 393 | #+nil
|
---|
[1467] | 394 | (test ideal-saturation-1
|
---|
[1508] | 395 | "Ideal saturation with 1 polynomial"
|
---|
[1536] | 396 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
[1468] | 397 | (F (cdr (string->poly "[x^3,x^2*y]" '(x y))))
|
---|
[1526] | 398 | (p (string->poly "x" '(x y)))
|
---|
[1467] | 399 | (ring *ring-of-integers*)
|
---|
| 400 | (order #'lex>)
|
---|
| 401 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
---|
[1530] | 402 | (print (colon-ideal ring-and-order F (list p)))
|
---|
| 403 | (print (colon-ideal ring-and-order F (list (poly-expt ring-and-order p 2))))
|
---|
| 404 | (print (colon-ideal ring-and-order F (list (poly-expt ring-and-order p 3))))
|
---|
| 405 | ;;(is-true (print (ideal-saturation-1 ring-and-order F p)))
|
---|
| 406 | ))
|
---|
[1459] | 407 |
|
---|
[1532] | 408 | (defun foo ()
|
---|
[1536] | 409 | (let* (($poly_grobner_algorithm :buchberger)
|
---|
[1535] | 410 | (F (cdr (string->poly "[x^3,x^2*y,u*x-1]" '(u x y))))
|
---|
[1532] | 411 | (order #'lex>)
|
---|
[1536] | 412 | (ring *ring-of-integers*)
|
---|
[1532] | 413 | (ring-and-order (make-ring-and-order :ring ring :order order)))
|
---|
| 414 | (print (reduced-grobner ring-and-order F))))
|
---|
| 415 |
|
---|
| 416 |
|
---|
[367] | 417 | (run! 'ngrobner-suite)
|
---|
[346] | 418 | (format t "All tests done!~%")
|
---|
[345] | 419 |
|
---|
| 420 |
|
---|