1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
23 | ;;
|
---|
24 | ;; Run tests using 5am unit testing framework
|
---|
25 | ;;
|
---|
26 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
27 |
|
---|
28 | ;; We assume that QuickLisp package manager is installed.
|
---|
29 | ;; See :
|
---|
30 | ;; https://www.quicklisp.org/beta/
|
---|
31 | ;;
|
---|
32 |
|
---|
33 | ;; The following is unnecessary after running:
|
---|
34 | ;; * (ql:add-to-init-file)
|
---|
35 | ;; at lisp prompt:
|
---|
36 | ;;(load "~/quicklisp/setup")
|
---|
37 |
|
---|
38 | (ql:quickload :fiveam)
|
---|
39 |
|
---|
40 | (defpackage #:5am-symbolic-poly
|
---|
41 | (:use :cl :it.bese.fiveam :monom :polynomial :infix :symbolic-polynomial))
|
---|
42 |
|
---|
43 | (in-package :5am-symbolic-poly)
|
---|
44 |
|
---|
45 | (def-suite symbolic-poly-suite
|
---|
46 | :description "Symbolic polynomial package suite")
|
---|
47 |
|
---|
48 | (in-suite symbolic-poly-suite)
|
---|
49 |
|
---|
50 | (test read-infix-form
|
---|
51 | "Infix form reader"
|
---|
52 | (is (equalp (with-input-from-string (s "X^2-Y^2+(-4/3)*U^2*W^3-5") (read-infix-form :stream s))
|
---|
53 | '(+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))))
|
---|
54 | (is (equalp (poly->string (string->poly "1" '(x y u w))) "1"))
|
---|
55 | (is (equalp (->sexp (string->poly "X^2-Y^2+(-4/3)*U^2*W^3-5" '(x y u w)))
|
---|
56 | '(+ (EXPT X 2) (* -1 (EXPT Y 2)) (* -4/3 (EXPT U 2) (EXPT W 3)) -5))))
|
---|
57 |
|
---|
58 |
|
---|
59 | (def-fixture sym-poly-context ()
|
---|
60 | (let ((p (make-instance 'poly))
|
---|
61 | (p-symbolic (make-instance 'symbolic-poly :vars '(x))))
|
---|
62 | (dolist (x '( ((2) . 22) ((4) . 44) ((5) . 55) ((8) . 88) ((9) . 99) ))
|
---|
63 | (poly-insert-term p (make-instance 'term :exponents (car x) :coeff (cdr x)))
|
---|
64 | (poly-insert-term p-symbolic (make-instance 'term :exponents (car x) :coeff (cdr x))))
|
---|
65 | (&body)))
|
---|
66 |
|
---|
67 | (test sym-poly
|
---|
68 | "Symbolic polynomial"
|
---|
69 | (with-fixture sym-poly-context ()
|
---|
70 | (is (universal-equalp (change-class p 'symbolic-poly :vars '(x)) p-symbolic )))
|
---|
71 | (with-fixture sym-poly-context ()
|
---|
72 | (universal-equalp (change-class p 'symbolic-poly :vars '(x y)) p-symbolic )))
|
---|
73 |
|
---|
74 | ;; The following example uses the Grobner basis obtained with Maxima
|
---|
75 | ;; Grobner package
|
---|
76 | ;;
|
---|
77 | ;; poly_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
|
---|
78 | ;;
|
---|
79 | ;; The Maxima output is placed in the string STR-1. The string STR-1
|
---|
80 | ;; is parsed STRING->POLY to a polynomial list GB-1. Then we take GB-1 and apply
|
---|
81 | ;; POLY->STRING to it. Then we feed the string STR-2 into Maxima as
|
---|
82 | ;; input and format according to Maxima rules. The resulting string is
|
---|
83 | ;; STR-3. We parse it with STRING->POLY to a polynomial list GB-2.
|
---|
84 | ;; Obviously, we should have equality GB-1 and GB-2. This is the test.
|
---|
85 | ;;
|
---|
86 | (def-fixture big-poly-list-context ()
|
---|
87 | (let* ((vars '(u v x y z))
|
---|
88 | (str-1 "[x-3*u*v^2+u^3-3*u,y+v^3-3*u^2*v-3*v,z+3*v^2-3*u^2,
|
---|
89 | (-u*z)-3*x+6*u*v^2+9*u,(-v*z)+y-2*v^3-3*v,z^2+6*v^2*z-9*z-9*v*y+9*u*x,
|
---|
90 | 4*u*v*z-3*u*y+3*v*x,2*u*z^2+6*x*z-18*u*z-9*u*v*y+9*v^2*x,
|
---|
91 | (-8*u*z^3)-24*x*z^2+72*u*z^2-36*v^2*x*z+27*u*y^2-27*v*x*y,
|
---|
92 | z^3+18*v^2*z^2-18*z^2-54*v*y*z+54*v^2*z+81*z+27*y^2-27*x^2,
|
---|
93 | (-4*z^4)+48*z^3-108*v*y*z^2+108*z^2+135*y^2*z+324*v*y*z+108*x^2*z
|
---|
94 | -1296*v^2*z-1944*z-243*v^2*y^2-648*y^2+243*v^2*x^2+648*x^2,
|
---|
95 | 8*v*z^3-9*y*z^2+72*v*z^2+54*v^2*y*z-27*y*z-27*v*y^2+27*v*x^2,
|
---|
96 | (-8*v*z^4)+12*y*z^3-96*v*z^3-216*v*z^2-135*v*y^2*z+324*y*z-27*v*x^2*z
|
---|
97 | +81*y^3+81*v*y^2-81*x^2*y-81*v*x^2,
|
---|
98 | (-64*v*z^6)+120*y*z^5-1152*v*z^5+288*y*z^4-5184*v*z^4-648*v*y^2*z^3
|
---|
99 | -216*y*z^3+6912*v*z^3+81*y^3*z^2-9720*v*y^2*z^2
|
---|
100 | -1539*x^2*y*z^2+31104*y*z^2+62208*v*z^2+8505*y^3*z
|
---|
101 | +46656*v*y^2*z-8505*x^2*y*z-93312*y*z+729*v*y^4-23328*y^3
|
---|
102 | -1458*v*x^2*y^2-23328*v*y^2+23328*x^2*y+729*v*x^4
|
---|
103 | +23328*v*x^2,
|
---|
104 | 8*z^6-72*z^5+648*v*y*z^4-648*z^4-945*y^2*z^3+5184*v*y*z^3-189*x^2*z^3
|
---|
105 | +5832*z^3+972*y^2*z^2+17496*v*y*z^2-2430*x^2*z^2+8748*v*y^3*z
|
---|
106 | -19683*y^2*z+2187*x^2*z-5103*y^4-4374*v*y^3+5832*x^2*y^2
|
---|
107 | +4374*v*x^2*y-729*x^4,
|
---|
108 | 8*z^7-48*z^6+648*v*y*z^5-864*z^5-945*y^2*z^4+5832*v*y*z^4-189*x^2*z^4
|
---|
109 | +3888*z^4+81*y^2*z^3+17496*v*y*z^3-2997*x^2*z^3+17496*z^3
|
---|
110 | +8748*v*y^3*z^2-16767*y^2*z^2+17496*v*y*z^2-5103*x^2*z^2
|
---|
111 | -5103*y^4*z+5832*x^2*y^2*z-6561*y^2*z-729*x^4*z+6561*x^2*z
|
---|
112 | -2187*y^4+4374*x^2*y^2-2187*x^4,
|
---|
113 | 64*z^9-10368*z^7+1296*y^2*z^6-1296*x^2*z^6-34992*y^2*z^5-34992*x^2*z^5
|
---|
114 | +419904*z^5+174960*y^2*z^4-174960*x^2*z^4-10935*y^4*z^3
|
---|
115 | -56862*x^2*y^2*z^3+314928*y^2*z^3-10935*x^4*z^3+314928*x^2*z^3
|
---|
116 | +118098*y^4*z^2-118098*x^4*z^2+59049*y^4*z-118098*x^2*y^2*z
|
---|
117 | +59049*x^4*z+19683*y^6-59049*x^2*y^4+59049*x^4*y^2-19683*x^6]")
|
---|
118 | ;; Parse STR-1 to polynomial list GB-1
|
---|
119 | (gb-1 (string->poly str-1 vars))
|
---|
120 | ;; Format GB-1 as a string STR-2
|
---|
121 | (str-2 (poly->string gb-1))
|
---|
122 | ;; Here STR-3 is a Maxima-postprocessed STR-2"
|
---|
123 | (str-3 "[X-3*U*V^2+U^3-3*U,Y+V^3-3*U^2*V-3*V,Z+3*V^2-3*U^2,
|
---|
124 | (-U*Z)-3*X+6*U*V^2+9*U,(-V*Z)+Y-2*V^3-3*V,Z^2+6*V^2*Z-9*Z-9*V*Y+9*U*X,
|
---|
125 | 4*U*V*Z-3*U*Y+3*V*X,2*U*Z^2+6*X*Z-18*U*Z-9*U*V*Y+9*V^2*X,
|
---|
126 | (-8*U*Z^3)-24*X*Z^2+72*U*Z^2-36*V^2*X*Z+27*U*Y^2-27*V*X*Y,
|
---|
127 | Z^3+18*V^2*Z^2-18*Z^2-54*V*Y*Z+54*V^2*Z+81*Z+27*Y^2-27*X^2,
|
---|
128 | (-4*Z^4)+48*Z^3-108*V*Y*Z^2+108*Z^2+135*Y^2*Z+324*V*Y*Z+108*X^2*Z
|
---|
129 | -1296*V^2*Z-1944*Z-243*V^2*Y^2-648*Y^2+243*V^2*X^2+648*X^2,
|
---|
130 | 8*V*Z^3-9*Y*Z^2+72*V*Z^2+54*V^2*Y*Z-27*Y*Z-27*V*Y^2+27*V*X^2,
|
---|
131 | (-8*V*Z^4)+12*Y*Z^3-96*V*Z^3-216*V*Z^2-135*V*Y^2*Z+324*Y*Z-27*V*X^2*Z
|
---|
132 | +81*Y^3+81*V*Y^2-81*X^2*Y-81*V*X^2,
|
---|
133 | (-64*V*Z^6)+120*Y*Z^5-1152*V*Z^5+288*Y*Z^4-5184*V*Z^4-648*V*Y^2*Z^3
|
---|
134 | -216*Y*Z^3+6912*V*Z^3+81*Y^3*Z^2-9720*V*Y^2*Z^2
|
---|
135 | -1539*X^2*Y*Z^2+31104*Y*Z^2+62208*V*Z^2+8505*Y^3*Z
|
---|
136 | +46656*V*Y^2*Z-8505*X^2*Y*Z-93312*Y*Z+729*V*Y^4-23328*Y^3
|
---|
137 | -1458*V*X^2*Y^2-23328*V*Y^2+23328*X^2*Y+729*V*X^4
|
---|
138 | +23328*V*X^2,
|
---|
139 | 8*Z^6-72*Z^5+648*V*Y*Z^4-648*Z^4-945*Y^2*Z^3+5184*V*Y*Z^3-189*X^2*Z^3
|
---|
140 | +5832*Z^3+972*Y^2*Z^2+17496*V*Y*Z^2-2430*X^2*Z^2+8748*V*Y^3*Z
|
---|
141 | -19683*Y^2*Z+2187*X^2*Z-5103*Y^4-4374*V*Y^3+5832*X^2*Y^2
|
---|
142 | +4374*V*X^2*Y-729*X^4,
|
---|
143 | 8*Z^7-48*Z^6+648*V*Y*Z^5-864*Z^5-945*Y^2*Z^4+5832*V*Y*Z^4-189*X^2*Z^4
|
---|
144 | +3888*Z^4+81*Y^2*Z^3+17496*V*Y*Z^3-2997*X^2*Z^3+17496*Z^3
|
---|
145 | +8748*V*Y^3*Z^2-16767*Y^2*Z^2+17496*V*Y*Z^2-5103*X^2*Z^2
|
---|
146 | -5103*Y^4*Z+5832*X^2*Y^2*Z-6561*Y^2*Z-729*X^4*Z+6561*X^2*Z
|
---|
147 | -2187*Y^4+4374*X^2*Y^2-2187*X^4,
|
---|
148 | 64*Z^9-10368*Z^7+1296*Y^2*Z^6-1296*X^2*Z^6-34992*Y^2*Z^5-34992*X^2*Z^5
|
---|
149 | +419904*Z^5+174960*Y^2*Z^4-174960*X^2*Z^4-10935*Y^4*Z^3
|
---|
150 | -56862*X^2*Y^2*Z^3+314928*Y^2*Z^3-10935*X^4*Z^3+314928*X^2*Z^3
|
---|
151 | +118098*Y^4*Z^2-118098*X^4*Z^2+59049*Y^4*Z-118098*X^2*Y^2*Z
|
---|
152 | +59049*X^4*Z+19683*Y^6-59049*X^2*Y^4+59049*X^4*Y^2-19683*X^6]")
|
---|
153 | ;; Finally, obtain a polynomial list GB-2 by parsing STR-3
|
---|
154 | (gb-2 (string->poly str-3 vars)))
|
---|
155 | ;; Discart STR-2
|
---|
156 | (declare (ignore str-2))
|
---|
157 | (&body)))
|
---|
158 |
|
---|
159 | (test big-poly-list
|
---|
160 | "Big polynomial list"
|
---|
161 | (with-fixture big-poly-list-context ()
|
---|
162 | (is (universal-equalp gb-1 gb-2))))
|
---|
163 |
|
---|
164 |
|
---|
165 | (run! 'symbolic-poly-suite)
|
---|
166 | (format t "All tests done!~%")
|
---|
167 |
|
---|
168 |
|
---|