;;; -*- Mode: Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Run tests using 5am unit testing framework ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; We assume that QuickLisp package manager is installed. ;; See : ;; https://www.quicklisp.org/beta/ ;; ;; The following is unnecessary after running: ;; * (ql:add-to-init-file) ;; at lisp prompt: ;;(load "~/quicklisp/setup") (ql:quickload :fiveam) (require :copy "copy") (require :monom "monom") (require :utils "utils") (require :polynomial "polynomial") (defpackage #:5am-poly (:use :cl :it.bese.fiveam :monom :polynomial)) (in-package :5am-poly) (def-suite poly-suite :description "Polynomial package suite") (in-suite poly-suite) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; POLY class tests ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (def-fixture poly-add-context () (let ((p (make-instance 'poly)) (q (make-instance 'poly :order nil)) (p+q (make-instance 'poly)) (p-q (make-instance 'poly)) (p-uminus (make-instance 'poly))) ;; Populate the polynomials; the lists of (exponents . coefficient) pairs ;; must be in increasing order in Q, but Q is unordered (:ORDER NIL) ;; so it will be automatically sorted. (dolist (x '( ((2) . 22) ((4) . 44) ((5) . 55) ((8) . 88) ((9) . 99) )) (poly-insert-term p (make-instance 'term :exponents (car x) :coeff (cdr x)))) (dolist (x '( ((9) . 90) ((0) . 11) ((2) . 20) ((3) . 33) ((4) . -44) ((7) . 77) ((8) . 88) )) (poly-insert-term q (make-instance 'term :exponents (car x) :coeff (cdr x)))) ;; P+Q (dolist (x '(((0) . 11) ((2) . 42) ((3) . 33) ((5) . 55) ((7) . 77) ((8) . 176) ((9) . 189) )) (poly-insert-term p+q (make-instance 'term :exponents (car x) :coeff (cdr x)))) ;; P-Q (dolist (x '(((0) . -11) ((2) . 2) ((3) . -33) ((4) . 88) ((5) . 55) ((7) . -77) ((9) . 9))) (poly-insert-term p-q (make-instance 'term :exponents (car x) :coeff (cdr x)))) ;; -P (dolist (x '( ((2) . -22) ((4) . -44) ((5) . -55) ((8) . -88) ((9) . -99))) (poly-insert-term p-uminus (make-instance 'term :exponents (car x) :coeff (cdr x)))) ;;(print p) (print q) (print p+q) (print p-q) (&body))) (test poly-add "Polynomial addition" (with-fixture poly-add-context () (is (universal-equalp (add-to p q) p+q))) (with-fixture poly-add-context () (is (universal-equalp (add p q) p+q))) (with-fixture poly-add-context () (is (universal-equalp (subtract-from p q) p-q))) (with-fixture poly-add-context () (is (universal-equalp (subtract p q) p-q))) (with-fixture poly-add-context () (is (universal-equalp (unary-minus p) p-uminus))) ) (def-fixture poly-multiply-context () (let ((p (make-instance 'poly)) (q (make-instance 'poly :order nil)) (p*q (make-instance 'poly))) ;; Populate the polynomials; the lists of (exponents . coefficient) pairs ;; must be in increasing order in Q, but Q is unordered (:ORDER NIL) ;; so it will be automatically sorted. (dolist (x '( ((0) . 1) ((1) . 2) )) (poly-insert-term p (make-instance 'term :exponents (car x) :coeff (cdr x)))) (dolist (x '( ((0) . 1) ((1) . 3) )) (poly-insert-term q (make-instance 'term :exponents (car x) :coeff (cdr x)))) ;; P*Q (dolist (x '( ((0) . 1) ((1) . 5) ((2) . 6))) (poly-insert-term p*q (make-instance 'term :exponents (car x) :coeff (cdr x)))) (&body))) (test poly-multiply "Polynomial multiplication" (with-fixture poly-multiply-context () (is (universal-equalp (multiply p q) p*q))) ) (test poly-standard-extension "Standard extension" (let* ((p (alist->poly '( ((0) . 1) ((1) . 2)))) (q (alist->poly '( ((0) . 1) ((2) . 3)))) (plist (list p q)) (p-ext (alist->poly '( ((1 0 0) . 1) ((1 0 1) . 2)))) (q-ext (alist->poly '( ((0 1 0) . 1) ((0 1 2) . 3)))) (plist-st-ext (list p-ext q-ext))) (is (universal-equalp (standard-extension plist) plist-st-ext)))) (test poly-standard-extension-1 "Standard extension 1" (let* ((p (alist->poly '( ((0) . 1) ((1) . 2)))) (q (alist->poly '( ((0) . 1) ((2) . 3)))) (plist (list p q)) (p-ext (alist->poly '( ((0 0 0) . -1) ((1 0 0) . 1) ((1 0 1) . 2)))) (q-ext (alist->poly '( ((0 0 0) . -1) ((0 1 0) . 1) ((0 1 2) . 3)))) (plist-st-ext (list p-ext q-ext))) (is (universal-equalp (standard-extension-1 plist) plist-st-ext)))) (test poly-standard-sum "Standard sum" (let* ((p (alist->poly '( ((0) . 1) ((1) . 2)))) (q (alist->poly '( ((0) . 1) ((2) . 3)))) (plist (list p q)) (std-sum (alist->poly '(((0 0 0) . -1) ((0 1 0) . 1) ((0 1 2) . 3) ((1 0 0) . 1) ((1 0 1) . 2))))) (is (universal-equalp (standard-sum plist) std-sum)))) (test poly-s-polynomial "S-Polynomial" (let* ((f (alist->poly '( ((1 0 0) . 1) ((1 0 1) . 2)))) ;x+2*x*z |*y*z (g (alist->poly '( ((0 1 0) . 1) ((0 1 2) . 2)))) ;y+2*y*z^2 |*x (s-poly (alist->poly '( ((1 1 0) . -1) ((1 1 1) . 1)))); x*y*z - x*y ) (is (universal-equalp (s-polynomial f g) s-poly)))) (test poly-content "Poly-content" (let* ((p (alist->poly '( ((1 0 0) . 12) ((1 0 1) . 15)))) (pc 3)) (is (universal-equalp (poly-content p) pc)))) (test poly-primitive-part "Poly-primitive-part" (let* ((p (alist->poly '( ((1 0 0) . 12) ((1 0 1) . 15)))) (pp (alist->poly '( ((1 0 0) . 4) ((1 0 1) . 5))))) (is (universal-equalp (poly-primitive-part p) pp)))) (test saturation-extension "Saturation-extension" (let* ((f (list (alist->poly '( ((1 0 0) . 2) ((1 0 1) . 3))) ;2*x+3*x*z (alist->poly '( ((1 0 0) . 5) ((0 1 2) . 7)))) ;5*x+7*y*z^2 ) (p (alist->poly '( ((1 1 1) . 11) ((2 3 4) . 13)))) ;11*x*y*z+13*x^2*y^3*z^4 (sat-ext (list (alist->poly '( ((0 1 0 0) . 2) ((0 1 0 1) . 3))) (alist->poly '( ((0 1 0 0) . 5) ((0 0 1 2) . 7)))))) (is (universal-equalp (saturation-extension f (list p)) sat-ext)))) (test saturation-extension-1 "Saturation-extension-1" (let* ((f (list (alist->poly '( ((1 0 0) . 2) ((1 0 1) . 3))) ;2*x+3*x*z (alist->poly '( ((1 0 0) . 5) ((0 1 2) . 7)))) ;5*x+7*y*z^2 ) (p (alist->poly '( ((1 1 1) . 11) ((2 3 4) . 13)))) ;11*x*y*z+13*x^2*y^3*z^4 (sat-ext-1 (list (alist->poly '( ((0 1 0 0) . 2) ((0 1 0 1) . 3))) (alist->poly '( ((0 1 0 0) . 5) ((0 0 1 2) . 7)))))) (is (universal-equalp (saturation-extension-1 f p) sat-ext-1)))) (run! 'poly-suite) (format t "All tests done!~%")