1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
23 | ;;
|
---|
24 | ;; Run tests using 5am unit testing framework
|
---|
25 | ;;
|
---|
26 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
27 |
|
---|
28 | ;; We assume that QuickLisp package manager is installed.
|
---|
29 | ;; See :
|
---|
30 | ;; https://www.quicklisp.org/beta/
|
---|
31 | ;;
|
---|
32 |
|
---|
33 | ;; The following is unnecessary after running:
|
---|
34 | ;; * (ql:add-to-init-file)
|
---|
35 | ;; at lisp prompt:
|
---|
36 | ;;(load "~/quicklisp/setup")
|
---|
37 |
|
---|
38 | (ql:quickload :fiveam)
|
---|
39 |
|
---|
40 | (defpackage #:5am-division
|
---|
41 | (:use :cl :it.bese.fiveam :copy :monom :polynomial :infix :symbolic-polynomial :division :ring))
|
---|
42 |
|
---|
43 | (in-package :5am-division)
|
---|
44 |
|
---|
45 | (def-suite division-suite
|
---|
46 | :description "Division algorithm suite")
|
---|
47 |
|
---|
48 | (in-suite division-suite)
|
---|
49 |
|
---|
50 | ;; Manual calculation supporting the test below.
|
---|
51 | ;; We divide X^2 by [X+Y,X-2*Y] with LEX> as order.
|
---|
52 | ;; LM(X^2)=X^2 is divisible by LM(X+Y)=X so the first partial quotient is X.
|
---|
53 | ;; Next, X^2 - X*(X+Y) = -X*Y.
|
---|
54 | ;; LM(-X*Y)=X*Y is divibile by LM(X+Y)=X so the second partial quotient is -Y.
|
---|
55 | ;; Next, -X*Y-(-Y)*(X+Y) = Y^2.
|
---|
56 | ;; LM(Y^2)=Y^2 is not divisible by LM(X+Y)=X or LM(X-2*Y)=X. Hence, division
|
---|
57 | ;; ends. The list of quotients is [X-Y,0]. The remainder is Y^2
|
---|
58 |
|
---|
59 | (def-fixture division-context ()
|
---|
60 | (let* ((f (string->poly "x^2" '(x y)))
|
---|
61 | (y-sq (string->poly "y^2" '(x y)))
|
---|
62 | (fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
63 | (quotients (cdr (string->poly "[x-y,0]" '(x y))))
|
---|
64 | (one (make-instance 'rational-field :value 1)))
|
---|
65 | (&body)))
|
---|
66 |
|
---|
67 | (test normal-form
|
---|
68 | "Normal form"
|
---|
69 | (with-fixture division-context ()
|
---|
70 | (is (universal-equalp (multiple-value-list (normal-form f fl)) (list y-sq one 2)))
|
---|
71 | (is (universal-equalp (multiple-value-list (poly-pseudo-divide f fl)) (list quotients y-sq one 2)))
|
---|
72 | (is-false (buchberger-criterion fl))
|
---|
73 | )
|
---|
74 | )
|
---|
75 |
|
---|
76 | ;; Maxima
|
---|
77 | ;;poly_normal_form(3*x^3*y+2*z, [x^2*y+x,x-y^2-z^3],[x,y,z]);
|
---|
78 | ;;Result: (-3*z^6)-6*y^2*z^3+2*z-3*y^4
|
---|
79 | (test normal-form-simple
|
---|
80 | (let ((vars '(x y z)))
|
---|
81 | (is (universal-equalp (normal-form (string->poly "3*x^3*y+2*z" vars)
|
---|
82 | (cdr (string->poly "[x^2*y+x,x-y^2-z^3]" vars)))
|
---|
83 | (string->poly "(-3*z^6)-6*y^2*z^3+2*z-3*y^4" vars)))))
|
---|
84 |
|
---|
85 | (test normal-form-easy
|
---|
86 | "Easy normal form tests"
|
---|
87 | (is (universal-zerop (normal-form (string->poly "0" '(x y)) (cdr (string->poly "[x,y]" '(x y))))))
|
---|
88 | ;; Maxima equivalent: poly_normal_form(3*x^2*y-x*y-1,[x-y,x+y],[x,y]);
|
---|
89 | (is (universal-equalp (normal-form (string->poly "3*x^2*y-x*y-1" '(x y)) (cdr (string->poly "[x-y,x+y]" '(x y))))
|
---|
90 | (string->poly "3*y^3-y^2-1" '(x y))))
|
---|
91 | ;; Maxima equivalent: poly_normal_form(3*x^2*y*z-x*y^3-1,[x^2-2*y,x+y*z],[x,y,z]);
|
---|
92 | (is (universal-equalp (normal-form (string->poly "3*x^2*y*z-x*y^3-1" '(x y z))
|
---|
93 | (cdr (string->poly "[x^2-2*y,x+y*z]" '(x y z))))
|
---|
94 | (string->poly "y^4*z+6*y^2*z-1" '(x y z)))))
|
---|
95 |
|
---|
96 | (def-fixture exact-division-context ()
|
---|
97 | (let* ((f (string->poly "x^2-4*y^2" '(x y)))
|
---|
98 | (g (string->poly "x+2*y" '(x y)))
|
---|
99 | (h (string->poly "x-2*y" '(x y))))
|
---|
100 | (&body)))
|
---|
101 |
|
---|
102 | (test exact-division
|
---|
103 | "Exact division in polynomial ring"
|
---|
104 | (with-fixture exact-division-context ()
|
---|
105 | (is (universal-equalp (poly-exact-divide f g) h))
|
---|
106 | (is (universal-zerop (subtract-from (poly-exact-divide f g) h)))))
|
---|
107 |
|
---|
108 |
|
---|
109 | ;; Check if a set of generators satisfies the Buchberger criterion
|
---|
110 | ;; The example is the Enneper surface ideal. Run this in Maxima to
|
---|
111 | ;; obtain the Grobner basis:
|
---|
112 | ;; poly_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
|
---|
113 | (def-fixture buchberger-criterion-context ()
|
---|
114 | (let ((fl (cdr (string->poly "[x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2]" '(u v x y z))))
|
---|
115 | (gb (cdr (string->poly "[x-3*u*v^2+u^3-3*u,y+v^3-3*u^2*v-3*v,z+3*v^2-3*u^2,
|
---|
116 | (-u*z)-3*x+6*u*v^2+9*u,(-v*z)+y-2*v^3-3*v,z^2+6*v^2*z-9*z-9*v*y+9*u*x,
|
---|
117 | 4*u*v*z-3*u*y+3*v*x,2*u*z^2+6*x*z-18*u*z-9*u*v*y+9*v^2*x,
|
---|
118 | (-8*u*z^3)-24*x*z^2+72*u*z^2-36*v^2*x*z+27*u*y^2-27*v*x*y,
|
---|
119 | z^3+18*v^2*z^2-18*z^2-54*v*y*z+54*v^2*z+81*z+27*y^2-27*x^2,
|
---|
120 | (-4*z^4)+48*z^3-108*v*y*z^2+108*z^2+135*y^2*z+324*v*y*z+108*x^2*z
|
---|
121 | -1296*v^2*z-1944*z-243*v^2*y^2-648*y^2+243*v^2*x^2+648*x^2,
|
---|
122 | 8*v*z^3-9*y*z^2+72*v*z^2+54*v^2*y*z-27*y*z-27*v*y^2+27*v*x^2,
|
---|
123 | (-8*v*z^4)+12*y*z^3-96*v*z^3-216*v*z^2-135*v*y^2*z+324*y*z-27*v*x^2*z
|
---|
124 | +81*y^3+81*v*y^2-81*x^2*y-81*v*x^2,
|
---|
125 | (-64*v*z^6)+120*y*z^5-1152*v*z^5+288*y*z^4-5184*v*z^4-648*v*y^2*z^3
|
---|
126 | -216*y*z^3+6912*v*z^3+81*y^3*z^2-9720*v*y^2*z^2
|
---|
127 | -1539*x^2*y*z^2+31104*y*z^2+62208*v*z^2+8505*y^3*z
|
---|
128 | +46656*v*y^2*z-8505*x^2*y*z-93312*y*z+729*v*y^4-23328*y^3
|
---|
129 | -1458*v*x^2*y^2-23328*v*y^2+23328*x^2*y+729*v*x^4
|
---|
130 | +23328*v*x^2,
|
---|
131 | 8*z^6-72*z^5+648*v*y*z^4-648*z^4-945*y^2*z^3+5184*v*y*z^3-189*x^2*z^3
|
---|
132 | +5832*z^3+972*y^2*z^2+17496*v*y*z^2-2430*x^2*z^2+8748*v*y^3*z
|
---|
133 | -19683*y^2*z+2187*x^2*z-5103*y^4-4374*v*y^3+5832*x^2*y^2
|
---|
134 | +4374*v*x^2*y-729*x^4,
|
---|
135 | 8*z^7-48*z^6+648*v*y*z^5-864*z^5-945*y^2*z^4+5832*v*y*z^4-189*x^2*z^4
|
---|
136 | +3888*z^4+81*y^2*z^3+17496*v*y*z^3-2997*x^2*z^3+17496*z^3
|
---|
137 | +8748*v*y^3*z^2-16767*y^2*z^2+17496*v*y*z^2-5103*x^2*z^2
|
---|
138 | -5103*y^4*z+5832*x^2*y^2*z-6561*y^2*z-729*x^4*z+6561*x^2*z
|
---|
139 | -2187*y^4+4374*x^2*y^2-2187*x^4,
|
---|
140 | 64*z^9-10368*z^7+1296*y^2*z^6-1296*x^2*z^6-34992*y^2*z^5-34992*x^2*z^5
|
---|
141 | +419904*z^5+174960*y^2*z^4-174960*x^2*z^4-10935*y^4*z^3
|
---|
142 | -56862*x^2*y^2*z^3+314928*y^2*z^3-10935*x^4*z^3+314928*x^2*z^3
|
---|
143 | +118098*y^4*z^2-118098*x^4*z^2+59049*y^4*z-118098*x^2*y^2*z
|
---|
144 | +59049*x^4*z+19683*y^6-59049*x^2*y^4+59049*x^4*y^2-19683*x^6]" '(u v x y z)))))
|
---|
145 | (&body)))
|
---|
146 |
|
---|
147 |
|
---|
148 | (test buchberger-containment
|
---|
149 | "Check ideal containment"
|
---|
150 | (with-fixture buchberger-criterion-context
|
---|
151 | ()
|
---|
152 | (let ((fl-copy (mapcar #'copy-instance fl))
|
---|
153 | (gb-copy (mapcar #'copy-instance gb)))
|
---|
154 | (loop
|
---|
155 | for i from 0 below (length fl)
|
---|
156 | do
|
---|
157 | (is (universal-zerop (normal-form (elt fl i) gb))
|
---|
158 | "Failed with I=~S~%" I))
|
---|
159 | ;; GB should not change in the process
|
---|
160 | (is (universal-equalp gb gb-copy))
|
---|
161 | ;; FL should not change either
|
---|
162 | (is (universal-equalp fl fl-copy)))))
|
---|
163 |
|
---|
164 | (test buchberger-criterion-full
|
---|
165 | (with-fixture buchberger-criterion-context
|
---|
166 | ()
|
---|
167 | (loop
|
---|
168 | for i from 0 below (length gb)
|
---|
169 | do
|
---|
170 | (loop
|
---|
171 | for j from (1+ i) below (length gb)
|
---|
172 | do
|
---|
173 | (is (universal-zerop (normal-form (s-polynomial (elt gb i) (elt gb j)) gb))
|
---|
174 | "Failed with I=~S, J=~S~%" I J)))))
|
---|
175 |
|
---|
176 | (test buchberger-criterion
|
---|
177 | "Buchberger criterion"
|
---|
178 | (with-fixture buchberger-criterion-context ()
|
---|
179 | (is-true (grobner-test gb fl))
|
---|
180 | )
|
---|
181 | )
|
---|
182 |
|
---|
183 |
|
---|
184 | (run! 'division-suite)
|
---|
185 | (format t "All tests done!~%")
|
---|
186 |
|
---|
187 |
|
---|