1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
23 | ;;
|
---|
24 | ;; Run tests using 5am unit testing framework
|
---|
25 | ;;
|
---|
26 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
27 |
|
---|
28 | ;; We assume that QuickLisp package manager is installed.
|
---|
29 | ;; See :
|
---|
30 | ;; https://www.quicklisp.org/beta/
|
---|
31 | ;;
|
---|
32 |
|
---|
33 | ;; The following is unnecessary after running:
|
---|
34 | ;; * (ql:add-to-init-file)
|
---|
35 | ;; at lisp prompt:
|
---|
36 | ;;(load "~/quicklisp/setup")
|
---|
37 |
|
---|
38 | (ql:quickload :fiveam)
|
---|
39 |
|
---|
40 | ;; Unless NGROBNER system loaded by ASDF,
|
---|
41 | ;; load the dependencies directly
|
---|
42 | #-ngrobner
|
---|
43 | (progn
|
---|
44 | (require :utils "utils")
|
---|
45 | (require :copy "copy")
|
---|
46 | (require :ring "ring")
|
---|
47 | (require :integer-ring "integer-ring")
|
---|
48 | (require :monom "monom")
|
---|
49 | (require :polynomial "polynomial")
|
---|
50 | (require :infix "infix")
|
---|
51 | (require :symbolic-polynomial "symbolic-polynomial")
|
---|
52 | (require :division "division"))
|
---|
53 |
|
---|
54 | (defpackage #:5am-division
|
---|
55 | (:use :cl :it.bese.fiveam :monom :polynomial :infix :symbolic-polynomial :division :integer-ring))
|
---|
56 |
|
---|
57 | (in-package :5am-division)
|
---|
58 |
|
---|
59 | (def-suite division-suite
|
---|
60 | :description "Division algorithm suite")
|
---|
61 |
|
---|
62 | (in-suite division-suite)
|
---|
63 |
|
---|
64 | ;; Manual calculation supporting the test below.
|
---|
65 | ;; We divide X^2 by [X+Y,X-2*Y] with LEX> as order.
|
---|
66 | ;; LM(X^2)=X^2 is divisible by LM(X+Y)=X so the first partial quotient is X.
|
---|
67 | ;; Next, X^2 - X*(X+Y) = -X*Y.
|
---|
68 | ;; LM(-X*Y)=X*Y is divibile by LM(X+Y)=X so the second partial quotient is -Y.
|
---|
69 | ;; Next, -X*Y-(-Y)*(X+Y) = Y^2.
|
---|
70 | ;; LM(Y^2)=Y^2 is not divisible by LM(X+Y)=X or LM(X-2*Y)=X. Hence, division
|
---|
71 | ;; ends. The list of quotients is [X-Y,0]. The remainder is Y^2
|
---|
72 |
|
---|
73 | (def-fixture division-context ()
|
---|
74 | (let* ((f (string->poly "x^2" '(x y)))
|
---|
75 | (y-sq (string->poly "y^2" '(x y)))
|
---|
76 | (fl (cdr (string->poly "[x+y,x-2*y]" '(x y))))
|
---|
77 | (quotients (cdr (string->poly "[x-y,0]" '(x y))))
|
---|
78 | (one (make-instance 'integer-ring :value 1)))
|
---|
79 | (&body)))
|
---|
80 |
|
---|
81 | (test normal-form
|
---|
82 | "Normal form"
|
---|
83 | (with-fixture division-context ()
|
---|
84 | (is (universal-equalp (multiple-value-list (normal-form f fl)) (list y-sq one 2)))
|
---|
85 | (is (universal-equalp (multiple-value-list (poly-pseudo-divide f fl)) (list quotients y-sq one 2)))
|
---|
86 | (is-false (buchberger-criterion fl))
|
---|
87 | )
|
---|
88 | )
|
---|
89 |
|
---|
90 | (test normal-form-easy
|
---|
91 | "Easy normal form tests"
|
---|
92 | (is (universal-zerop (normal-form (string->poly "0" '(x y)) (cdr (string->poly "[x,y]" '(x y))))))
|
---|
93 | ;; Maxima equivalent: poly_normal_form(3*x^2*y-x*y-1,[x-y,x+y],[x,y]);
|
---|
94 | (is (universal-equalp (normal-form (string->poly "3*x^2*y-x*y-1" '(x y)) (cdr (string->poly "[x-y,x+y]" '(x y))))
|
---|
95 | (string->poly "3*y^3-y^2-1" '(x y))))
|
---|
96 | ;; Maxima equivalent: poly_normal_form(3*x^2*y*z-x*y^3-1,[x^2-2*y,x+y*z],[x,y,z]);
|
---|
97 | (is (universal-equalp (normal-form (string->poly "3*x^2*y*z-x*y^3-1" '(x y z))
|
---|
98 | (cdr (string->poly "[x^2-2*y,x+y*z]" '(x y z))))
|
---|
99 | (string->poly "y^4*z+6*y^2*z-1" '(x y z)))))
|
---|
100 |
|
---|
101 | (def-fixture exact-division-context ()
|
---|
102 | (let* ((f (string->poly "x^2-4*y^2" '(x y)))
|
---|
103 | (g (string->poly "x+2*y" '(x y)))
|
---|
104 | (h (string->poly "x-2*y" '(x y))))
|
---|
105 | (&body)))
|
---|
106 |
|
---|
107 | (test exact-division
|
---|
108 | "Exact division in polynomial ring"
|
---|
109 | (with-fixture exact-division-context ()
|
---|
110 | (is (universal-equalp (poly-exact-divide f g) h))
|
---|
111 | (is (universal-zerop (subtract-from (poly-exact-divide f g) h)))))
|
---|
112 |
|
---|
113 |
|
---|
114 | (run! 'division-suite)
|
---|
115 | (format t "All tests done!~%")
|
---|
116 |
|
---|
117 |
|
---|