;;; -*- Mode: Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Run tests using 5am unit testing framework ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; We assume that QuickLisp package manager is installed. ;; See : ;; https://www.quicklisp.org/beta/ ;; ;; The following is unnecessary after running: ;; * (ql:add-to-init-file) ;; at lisp prompt: ;;(load "~/quicklisp/setup") (ql:quickload :fiveam) ;; Unless NGROBNER system loaded by ASDF, ;; load the dependencies directly #-ngrobner (progn (require :utils "utils") (require :copy "copy") (require :monom "monom") (require :polynomial "polynomial") (require :infix "infix") (require :symbolic-polynomial "symbolic-polynomial") (require :division "division")) (defpackage #:5am-division (:use :cl :it.bese.fiveam :monom :polynomial :infix :symbolic-polynomial :division)) (in-package :5am-division) (def-suite division-suite :description "Division algorithm suite") (in-suite division-suite) ;; Manual calculation supporting the test below. ;; We divide X^2 by [X+Y,X-2*Y] with LEX> as order. ;; LM(X^2)=X^2 is divisible by LM(X+Y)=X so the first partial quotient is X. ;; Next, X^2 - X*(X+Y) = -X*Y. ;; LM(-X*Y)=X*Y is divibile by LM(X+Y)=X so the second partial quotient is -Y. ;; Next, -X*Y-(-Y)*(X+Y) = Y^2. ;; LM(Y^2)=Y^2 is not divisible by LM(X+Y)=X or LM(X-2*Y)=X. Hence, division ;; ends. The list of quotients is [X-Y,0]. The remainder is Y^2 (def-fixture division-context () (let* ((f (string->poly "x^2" '(x y))) (y-sq (string->poly "y^2" '(x y))) (fl (cdr (string->poly "[x+y,x-2*y]" '(x y)))) (quotients (cdr (string->poly "[x-y,0]" '(x y))))) (&body))) (test normal-form "Normal form" (with-fixture division-context () (is (universal-equalp (multiple-value-list (normal-form f fl)) (list y-sq 1 2))) (is (universal-equalp (multiple-value-list (poly-pseudo-divide f fl)) (list quotients y-sq 1 2))) (is-false (buchberger-criterion fl)))) (test normal-form-easy "An easy normal form" (is (normal-form (string->poly "3*x^2*y-x*y-1" '(x y)) (cdr (string->poly "[x-y,x+y]" '(x y)))) (string->poly "3*y^3-y^2-1" '(x y)))) (def-fixture exact-division-context () (let* ((f (string->poly "x^2-4*y^2" '(x y))) (g (string->poly "x+2*y" '(x y))) (h (string->poly "x-2*y" '(x y)))) (&body))) (test exact-division "Exact division in polynomial ring" (with-fixture exact-division-context () (is (universal-equalp (poly-exact-divide f g) h)) (is (universal-zerop (subtract-from (poly-exact-divide f g) h))))) (run! 'division-suite) (format t "All tests done!~%")