| Rev | Line | |
|---|
| [1] | 1 | ;;
|
|---|
| [99] | 2 | ;; Prove Apollonius Circle Theorem:
|
|---|
| 3 | ;;----------------------------------------------------------------
|
|---|
| 4 | ;; If ABC is a right triangle with hypotenuse BC,
|
|---|
| 5 | ;; and
|
|---|
| [1] | 6 | ;;
|
|---|
| [99] | 7 | ;; 1) M is the midpoint of BC;
|
|---|
| 8 | ;; 2) M1 is the midpoint of AB;
|
|---|
| 9 | ;; 3) M2 is the midpoint of AC;
|
|---|
| 10 | ;; 4) is the foot of the altitude dropped from A;
|
|---|
| 11 | ;;
|
|---|
| 12 | ;; then A, H, M1, M2 and M lie on the same circle.
|
|---|
| 13 | ;;----------------------------------------------------------------
|
|---|
| 14 | ;;
|
|---|
| 15 |
|
|---|
| [1] | 16 | (prove-theorem
|
|---|
| [99] | 17 |
|
|---|
| 18 | ;; If
|
|---|
| 19 | (
|
|---|
| [101] | 20 | (perpendicular A B A C) ; AB _|_ AC
|
|---|
| 21 | (midpoint B C M) ; M is the midpoint of BC
|
|---|
| 22 | (midpoint A M O) ; O is the midpoint of AM
|
|---|
| 23 | (collinear B H C) ; H lies on BC
|
|---|
| 24 | (perpendicular A H B C) ; AH _|_ BC
|
|---|
| [99] | 25 | )
|
|---|
| 26 | ;; Then
|
|---|
| 27 | (
|
|---|
| [101] | 28 | (equidistant M O H O) ; MO = HO
|
|---|
| 29 | ;; Or
|
|---|
| 30 | (identical-points B C) ; B = C
|
|---|
| [99] | 31 | )
|
|---|
| 32 | )
|
|---|
Note:
See
TracBrowser
for help on using the repository browser.