
Rasterizing primitives:
know where to draw the line

Dr Nicolas Holzschuch

University of Cape Town

e-mail: holzschu@cs.uct.ac.za

mailto:holzschu@cs.uct.ac.za

Rasterization of Primitives

• How to draw primitives?
– Convert from geometric definition to pixels

– rasterization = selecting the pixels

• Will be done frequently
– must be fast:

• use integer arithmetics

• use addition instead of multiplication

Rasterization Algorithms

• Algorithmics:
– Line-drawing: Bresenham, 1965

– Polygons: uses line-drawing

– Circles: Bresenham, 1977

• Currently implemented in all graphics
libraries
– You’ll probably never have to implement

them yourself

Why should I know them?

• Excellent example of efficiency:
– no superfluous computations

• Possible extensions:
– efficient drawing of parabolas, hyperbolas

• Applications to similar areas:
– robot movement, volume rendering

• The CG equivalent of Euler’s algorithm

Map of the lecture

• Line-drawing algorithm
– naïve algorithm

– Bresenham algorithm

• Circle-drawing algorithm
– naïve algorithm

– Bresenham algorithm

Naïve algorithm for lines

• Line definition: ax+by+c = 0

• Also expressed as: y = mx + d
– m = slope

– d = distance

For x=xmin to xmax
compute y = m*x+d

light pixel (x,y)

Extension by symmetry

• Only works with -1 ≤ m ≤ 1:

m = 1/3
m = 3

Extend by symmetry for m > 1

Problems

• 2 floating-point operations per pixel

• Improvements:

compute y = m*x0+d

For x=xmin to xmax

y += m

light pixel (x,y)

• Still 1 floating-point operation per pixel

• Compute in floats, pixels in integers

Bresenham algorithm: core idea

• At each step, choice between 2 pixels
(0≤m≤1)

Line drawn so far Either I lit this pixel…

…or that one

Bresenham algorithm

• I need a criterion to pick between them

• Distance between line and center of pixel:
– the error associated with this pixel

Error pixel 1

Error pixel 2

Bresenham Algorithm (2)

• The sum of the 2 errors is 1
– Pick the pixel with error < 1/2

• If error of current pixel < 1/2,
– draw this pixel

• Else:
– draw the other pixel.

Error of current pixel = 1 - error

How to compute the error?

• Line defined as: ax + by + c = 0

• Distance from pixel (x0,y0) to line:
 d = ax0 + by0 + c

• Draw this pixel iff:
 ax0 + by0 + c < 1/2

• Update for next pixel:
x += 1, d += a

We’re still in floating point!

• Yes, but now we can get back to integer:
e = 2ax0 + 2by0 + 2c - 1< 0

• If e<0, stay horizontal, if e>0, move up.

• Update for next pixel:
– If I stay horizontal: e += 2a

– If I move up: e += 2a + 2b

Bresenham algorithm: summary

• Several good ideas:
– use of symmetry to reduce complexity

– choice limited to two pixels

– error function for choice criterion

– stay in integer arithmetics

• Very straightforward:
– good for hardware implementation

– good for assembly language

Circle: naïve algorithm

• Circle equation: x2+y2-r2 = 0

• Simple algorithm:
for x = xmin to xmax

 y = sqrt(r*r - x*x)

 draw pixel(x,y)

• Work by octants and use symmetry

Circle: Bresenham algorithm

• Choice between two pixels:

Circle drawn so far

…or that one

Either I lit this pixel…

Bresenham for circles

• Mid-point algorithm:

If the midpoint between pixels is inside the circle, E is closer
If the midpoint is outside, SE is closer.

E

SE

Bresenham for circles (2)

• Error function: d = x2+y2 - r2

• Compute d at the midpoint:
• last pixel drawn: (x,y)

• d = (x+1)2 + (y - 1/2)2 - r2

• d < 0: draw SE

• d ≥ 0: draw E

Updating the error

• If I increment x:
• d += 2x +3

• If I decrement y:
• d += -2y + 2

• Two mult, two add per pixel

• Can you do better?

Doing even better

• The error is not linear

• However, what I add to the error is

• Keep ∆x and ∆y:
– At each step:

– ∆x += 2, ∆y -= 2

– d += ∆x

– If I decrement y, d += ∆y

• 4 additions per pixel

Midpoint algorithm: summary

• Extension of line drawing algorithm

• Test based on midpoint position

• Position checked using function:
– sign of (x2+y2-r2)

• With two steps, uses only additions

Extension to other functions

• Midpoint algorithm easy to extend to
any curve defined by: f(x,y) = 0

• If the curve is polynomial, can be
reduced to only additions using n-order
differences

Conclusion

• The basics of Computer Graphics:
– drawing lines and circles

• Simple algorithms, easy to implement
with low-level languages

• So far, a one-task world:
– our primitives extend indefinitely

– Windows = boundaries = clipping

http://www.cs.uct.ac.za/~holzschu/ClippingLines.pdf

	Rasterizing primitives
	Rasterization of Primitives
	Rasterization Algorithms
	Why should I know them?
	Map of the lecture

	Lines
	Naïve algorithm for lines
	Extension by symmetry
	Problems

	Bresenham algorithm: core idea
	Bresenham algorithm
	Bresenham Algorithm (2)
	How to compute the error?
	We’re still in floating point!
	Bresenham algorithm: summary

	Circles
	Naïve algorithm
	Bresenham algorithm
	Bresenham for circles
	Bresenham for circles (2)
	Updating the error
	Doing even better
	Midpoint algorithm: summary

	Other functions

	Conclusion

