[rychlik@ruby ~]$ maxima GCL (GNU Common Lisp) Version(2.4.0) Sun Sep 22 00:12:12 MST 2002 Licensed under GNU Library General Public License Contains Enhancements by W. Schelter Maxima 5.6 Tue May 21 11:08:32 MST 2002 (with enhancements by W. Schelter). Licensed under the GNU Public License (see file COPYING) (C1) theta: omega*t; (D1) omega t (C2) s: r * cos(theta) + sqrt(d^2-r^2*sin(theta)^2); 2 2 2 (D2) SQRT(d - r SIN (omega t)) + r COS(omega t) (C3) diff(s,t, 2); 2 2 2 2 2 2 omega r SIN (omega t) omega r COS (omega t) (D3) --------------------------- - --------------------------- 2 2 2 2 2 2 SQRT(d - r SIN (omega t)) SQRT(d - r SIN (omega t)) 2 4 2 2 omega r COS (omega t) SIN (omega t) 2 - ------------------------------------- - omega r COS(omega t) 2 2 2 3/2 (d - r SIN (omega t)) (C4) ratsimp(%); 2 4 4 2 2 2 (D4) - (- omega r SIN (omega t) + SQRT(d - r SIN (omega t)) 2 3 2 2 2 (omega r COS(omega t) SIN (omega t) - d omega r COS(omega t)) 2 2 2 2 2 2 2 2 + d omega r SIN (omega t) - d omega r COS (omega t)) 2 2 2 2 2 2 /(SQRT(d - r SIN (omega t)) (r SIN (omega t) - d )) (C5) tex(%); $$-{{-omega^{2}\>r^{4}\>\sin ^{4}\left(omega\>t\right)+\sqrt{d^{2}-r ^{2}\>\sin ^{2}\left(omega\>t\right)}\>\left(omega^{2}\>r^{3}\> \left(\cos omega\>t\right)\>\sin ^{2}\left(omega\>t\right)-d^{2}\> omega^{2}\>r\>\left(\cos omega\>t\right)\right)+d^{2}\>omega^{2}\>r ^{2}\>\sin ^{2}\left(omega\>t\right)-d^{2}\>omega^{2}\>r^{2}\>\cos ^{2}\left(omega\>t\right)}\over{\sqrt{d^{2}-r^{2}\>\sin ^{2}\left( omega\>t\right)}\>\left(r^{2}\>\sin ^{2}\left(omega\>t\right)-d^{2} \right)}}$$ (D5) FALSE (C6)