Sample Homework Solution

Marek Rychlik (derived from a student's homework; some solutions are incorrect!!!)

11/02/2021

Contents

Setup of some 'knitr' parameters

Install required packages You may omit this R "chunk" after the packages are installed.

Exercise 4.5

Let $0 < p = 1 - q < 1$

From Example 4.3:

The sequence given by $u_n = \binom{N}{n}$ if $n = 0, 1, 2, ..., N$ $u_n = 0$ otherwise

has generating function $U(s) = \sum_{n=0}^{N} {N \choose n} s^n = (1 + s)^N$

generating function: $U(s) = \sqrt{1 - 4pgs^2} = (1 - 4pqs^2)^{\frac{1}{2}}$

sequence: $u_n = \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix}$ if $n = 0, 1, 2, ..., N$ $u_n = 0$ otherwise

X is a random variable with probability generating function $G_X(s)$ *k* is a positive integer $Y = kX$ and $Z = X + k$ have probability generating functions $G_Y(s) = G_X(s^k)$, $G_Z(s) = s^k G_X(s)$

X is uniformly distributed on $\{0, 1, 2, ..., a\}$ in that $P(X = k) = \frac{1}{a+1}$ for $k = 0, 1, 2, ..., a$ *X* has probability generating function $G_X(s) = \frac{1-s^{a+1}}{(a+1)(1-s)}$ (*a*+1)(1−*s*)

From Example 4.16: If *X* has the Poisson distribution with parameter λ , then

$$
G_X(s) = \sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k e^{-\lambda} s^k = e^{\lambda(s-1)}
$$

From Proof 4.25: $E(X) = G'_X(s)$

$$
E(X) = G'_{X}(s) = \frac{d}{ds}e^{\lambda(s-1)}
$$

= $e^{\lambda(s-1)}\frac{d}{ds}\lambda(s-1)$
= $e^{\lambda(s-1)}\lambda\left[\frac{d}{ds}(s) - \frac{d}{ds}(1)\right]$
= $e^{\lambda(s-1)}\lambda[1-0]$
= $e^{\lambda(s-1)}\lambda$

From Equation 4.26: $E(X) = G'_{X}(1)$

$$
E(X) = G'_{X}(1) = e^{\lambda[(1) - 1]} \lambda
$$

$$
= e^{\lambda(0)} \lambda
$$

$$
= e^0 \lambda
$$

$$
= \lambda
$$

From Equation 4.28: $var(X) = G''_X(1) + G'_X(1) - (G'_X(1))^2$

$$
G''_X(s) = \frac{d}{ds} \lambda e^{\lambda(s-1)}
$$

\n
$$
= \lambda \frac{d}{ds} e^{\lambda(s-1)}
$$

\n
$$
= \lambda e^{\lambda(s-1)} \frac{d}{ds} \lambda(s-1)
$$

\n
$$
= \lambda e^{\lambda(s-1)} \lambda(1-0)
$$

\n
$$
= \lambda e^{\lambda(s-1)} \lambda
$$

\n
$$
= \lambda^2 e^{\lambda(s-1)}
$$

\n
$$
G''_X(1) = \lambda^2 e^{\lambda[(1)-1]}
$$

\n
$$
= \lambda^2 e^{\lambda(0)}
$$

\n
$$
= \lambda^2
$$

\n
$$
var(X) = \lambda^2 + \lambda - (\lambda)^2
$$

\n
$$
var(X) = \lambda^2 + \lambda - \lambda^2
$$

\n
$$
var(X) = \lambda
$$

A random variable having the Poisson distribution with parameter *λ* has both mean and variance equal to *λ*.

 X has the negative binomial distribution with parameters \boldsymbol{n} and \boldsymbol{p}

From Example 4.17: If *X* has the negative binomial distribution with parameters *n* and *p*, then

$$
G_X(s) = \sum_{k=n}^{\infty} {k-1 \choose n-1} p^n q^{k-n} s^k = (\frac{ps}{1-qs})^n
$$

if |*s*| *< q*−¹ $G_{X}^{\{X\}}(s) =$ \$ $E(X) = \frac{n}{p}$, $var(X) = \frac{nq}{p^2}$ where $q = 1 - p$

Find distribution of $X + Y$, where *X* and *Y* are independent random variables, *X* having the binomial distribution with parameters *m* and *p*, and Y having the binomial distribution with parameters *n* and *p*.

Deduce that the sum of *n* independent random variables, each having the Bernoulli distribution with parameter *p*, has the binomial distribution with parameters *n* and *p*.

Egg cracks with probability of *p*

Number of eggs laid today by the hen has the Poisson distribution, parameter λ Number of uncracked ages has the Poisson distribution with parameter $\lambda(1-p)$

$$
G_N(s) = E(s^N) = (p + ps)^{\lambda}
$$

\n
$$
G_X(s) = e^{\lambda(1-p)(s-1)}
$$

\n
$$
S = X_1 + X_2 + ... + X_N
$$

\n
$$
G_S(s) = G_N(G_X(s)) = (p + p(e^{\lambda(1-p)(s-1)}))^{\lambda}
$$

Exercise C4.4.2

A random variable *X* has generating function $G_X(s) = (\frac{1}{2} + \frac{1}{2}e^{3(s-1)})^{20}$

Let *X* have probability generating function $G_X(s)$ and let $u_n = P(X > n)$ The generating function $U(s)$ of the sequence u_0, u_1, \dots satisfies $(1 - s)U(s) = 1 - G_X(s)$ whenever the series defining these generating function coverage

Symmetrical die thrown independently 7 times.

$$
P(X_j = k) = \begin{cases} \frac{1}{6}, & k \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{otherwise.} \end{cases}
$$

\n
$$
G_{X_j}(s) = \sum_{k=1}^{6} \frac{1}{6} s^k = \frac{1}{6} s \frac{1 - s^6}{1 - s}
$$

\n
$$
G_X(s) = (G_{X_1}(s))^6 = \left(\frac{1}{6} s \frac{1 - s^6}{1 - s}\right)^6
$$

\n
$$
P(X = 14) = [s^{14}] \left(\frac{1}{6} s \frac{1 - s^6}{1 - s}\right)^6 \qquad (g = 14 - 6 = 8)
$$

\n
$$
= \frac{1}{6^6} [s^g] \left(\frac{1 - s^6}{1 - s}\right)^6
$$

\n
$$
= \frac{1}{6^6} [s^g] \left[\sum_{k=0}^{6} {6 \choose k} (-s^6)^k\right] \left[\sum_{l=0}^{\infty} {6 \choose l} (-s)^l\right]
$$

\n
$$
= \frac{1}{6^6} [s^g] \sum_{k=0}^{6} \sum_{l=0}^{\infty} {6 \choose k} (-1)^{k+l} {6 \choose l} s^{6k+l}
$$

\n
$$
= \frac{1}{6^6} \sum_{k=0,1,...,6} {6 \choose k} {6 \choose l} (-1)^{k+l}
$$

\n
$$
= \frac{1}{6^6} \left[-{6 \choose 0} {6 \choose 8} + {6 \choose 1} {6 \choose 3}\right]
$$

\n
$$
= \frac{1}{46656} \left[-(1) {6 \choose 8} + (6) {6 \choose 3}\right]
$$

3 players throw a perfect die in turn independently in the order A, B, C, A, ... until one wins by throwing a 5 or 6.

Probability generating function $F(s)$ for the random variable X which takes the value r if the game ends on the *r*th throw can be written as:

$$
F(s) = \frac{9s}{27 - 8s^3} + \frac{6s^2}{27 - 8s^3} + \frac{4s^3}{27 - 8s^3}
$$

Tree of a particular type flowers once each year.

Probability a tree has *n* flowers is $(1-p)p^n, n = 0, 1, 2, ...$ where $0 < p < 1$

Each flower has probability $\frac{1}{2}$ of producing a ripe fruit, independently of all other flowers.

a)
$$
P(X = r)
$$

b) $P(X = n | X = r)$

Let *X* and *Y* be independent random variables having Poisson distributions with parameters λ and μ respectively.

 $X + Y$ has a Poisson distribution

 $var(X + Y) = var(X) + var(Y)$

conditional probability: $P(X = k | X + Y = n)$ for $0 \le k \le n$

conditional expectation of *X* given that $X + Y = n$:

$$
E(X|X+Y=n) = \sum_{k=0}^{\infty} kP(X=k|X+Y=n) = \frac{n\lambda}{\lambda+\mu}
$$

Probability generating function *φ*

If $\phi(s)$ has the form $\frac{p(s)}{q(s)}$, the mean value is $\frac{(p'(1)-q'(1))}{q(1)}$ *q*(1)

A random number N of foreign objects in soup, with mean μ and finite variance.

Each object is a fly with probability *p*, and otherwise spider.

Different objects have independent types.

Let F be the number of flies and S the number of spiders.

a) $G_F(s) = G_N(ps + 1 - p)$

- b) *N* has the Poisson distribution with parameter μ . *F* has the Poisson distribution with parameter μp . *F* and *S* are independent.
- c) Let $p = \frac{1}{2}$ and suppose *F* and *S* are independent. $G_N(s) = G_N(\frac{1}{2}[1+s])^2$

 $\left[1 + \left(\frac{x}{n}\right) + o(n^{-1})\right]^n \to e^x$ as $n \to \infty$