close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: grobner.demo@ 2

Last change on this file since 2 was 2, checked in by Marek Rychlik, 15 years ago
File size: 8.6 KB
Line 
1/* -*- Mode: Maxima -*- */
2
3/*
4**
5** $Id: grobner.demo,v 1.2 2003/05/03 11:40:00 starseeker Exp $
6** Copyright (C) 1999, 2002 Marek Rychlik <rychlik@u.arizona.edu>
7**
8** This program is free software; you can redistribute it and/or modify
9** it under the terms of the GNU General Public License as published by
10** the Free Software Foundation; either version 2 of the License, or
11** (at your option) any later version.
12**
13** This program is distributed in the hope that it will be useful,
14** but WITHOUT ANY WARRANTY; without even the implied warranty of
15** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16** GNU General Public License for more details.
17**
18** You should have received a copy of the GNU General Public License
19** along with this program; if not, write to the Free Software
20** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21**
22*/
23showtime:true;
24
25/* POLY_MONOMIAL_ORDER switch represents the monomial order that will globally be in effect
26 for the succeeding operations. */
27
28poly_monomial_order:'lex;
29
30/* POLY_EXPAND parses polynomials to internal form and back. It can be used to test
31 whether an expression correctly parses to the internal representation.
32 The following examples illustrate that indexed and transcendental function variables
33 are allowed. */
34
35poly_expand(x,[x,y]);
36poly_expand(x+y,[x,y]);
37poly_expand(x-y,[x,y]);
38poly_expand((x-y)*(x+y),[x,y]);
39poly_expand((x+y)^2,[x,y]);
40poly_expand((x+y)^5,[x,y]);
41poly_expand(x/y-1,[x]);
42poly_expand(x^2/sqrt(y)-x*exp(y)-1,[x]);
43poly_expand(sin(x)-sin(x)^2-1,[sin(x)]);
44poly_expand((x[2]/sin(y[3])-1)^5,[x[2]]),poly_return_term_list:true;
45
46/* POLY_ADD, POLY_SUBTRACT, POLY_MULTIPLY and POLY_EXPT are the arithmetical operations on polynomials.
47 These are performed using the internal representation, but the results are converted back to the
48 Maxima general form */
49
50poly_add(x^2*y+z,x-z,[x,y,z]);
51poly_subtract(x^2*y+z,x-z,[x,y,z]);
52poly_multiply(x^2*y+z,x-z,[x,y,z]) - (x^2*y+z)*(x-z), expand;
53poly_expt(x-y, 3, [x,y]) - (x-y)^3, expand;
54
55/* POLY_CONTENT extracts the GCD of its coefficients */
56poly_content(21*x+35*y,[x,y]);
57
58/* POLY_PRIMITIVE_PART divides a polynomial by the GCD of its coefficients */
59poly_primitive_part(21*x+35*y,[x,y]);
60
61/* POLY_S_POLYNOMIAL computest the syzygy polynomial (S-polynomial) of two polynomials */
62poly_s_polynomial(x+y,x-y,[x,y]);
63
64
65/* POLY_NORMAL_FORM finds the normal form of a polynomial with respect to a set of polynomials. */
66poly_normal_form(x^2+y^2,[x-y,x+y],[x,y]);
67poly_pseudo_divide(2*x^2+3*y^2,[7*x-y^2,11*x+y],[x,y]);
68poly_exact_divide((x+y)^2,x+y,[x,y]);
69
70/* POLY_BUCHBERGER performs the Buchberger algorithm on a list of polynomials and returns
71 the resulting Grobner basis */
72poly_buchberger([x^2-y*x,x^2+y+x*y^2],[x,y]);
73
74/* POLY_REDUCTION reduces a set of polynomials, so that
75 each polynomial is fully reduced with respect to the other polynomials */
76
77poly_reduction([x^2-x*y,x*y^2+y+x^2,x*y^2+x*y+y,x*y-y^2,y^3+y^2+y],[x,y]);
78
79/* POLY_MINIMIZATION selects a subset of a set of polynomials, so that no leading monomial is divisible by
80 another leading monomial */
81
82poly_minimization([x^2-x*y,x*y^2+y+x^2,x*y^2+x*y+y,x*y-y^2,y^3+y^2+y],[x,y]);
83
84/* POLY_REDUCED_GROBNER returns a reduced Grobner basis */
85poly_reduced_grobner([x^2-y*x,x^2+y+x*y^2],[x,y]);
86
87/* POLY_NORMALIZE divides a polynomial by its leading coefficient */
88poly_normalize(2*x+y,[x,y]);
89
90/* POLY_NORMALIZE_LIST applies POLY_NORMALIZE to each polynomial in the list */
91
92poly_normalize_list([2*x+y,3*x^2+7],[x,y]);
93
94/* POLY_DEPENDS_P tests whether a polynomial depends on a variable */
95
96poly_depends_p(x^2+y,x,[x,y,z]);
97poly_depends_p(x^2+y,z,[x,y,z]);
98
99
100/* POLY_ELIMINATION_IDEAL returns the grobner basis of the K-th elimination ideal of an
101 ideal specified as a list of generating polynomials (not necessarily Grobner basis */
102
103poly_elimination_ideal([x+y,x-y],0,[x,y]);
104poly_elimination_ideal([x+y,x-y],1,[x,y]);
105poly_elimination_ideal([x+y,x-y],2,[x,y]);
106
107/* POLY_IDEAL_INTERSECTION returns the intersection of two ideals */
108poly_ideal_intersection([x^2+y,x^2-y],[x,y^2],[x,y]);
109
110/* POLY_LCM and POLY_GCD are the Grobner versions of LCM and GCD */
111
112poly_lcm(x*y^2-x,x^2*y+x,[x,y]);
113poly_gcd(x*y^2-x,x^2*y+x,[x,y]);
114
115/* POLY_GROBNER_MEMBER tests whether a polynomial belongs to an ideal generated by a list of polynomials,
116 which is assumed to be a Grobner basis. Equivalent to NORMAL_FORM being 0. */
117
118poly_grobner_member(x+y,[x,y],[x,y]);
119
120/* POLY_GROBNER_EQUAL tests whether two Grobner bases generate the same ideal.
121 This is equivalent to checking that every polynomial of the first basis reduces to 0
122 modulo the second basis and vice versa. Note that in the example below the
123 first list is not a Grobner basis, and thus the result is FALSE. */
124
125poly_grobner_equal([x+y,x-y],[x,y],[x,y]);
126
127/* POLY_GROBNER_SUBSETP tests whether an ideal generated by the first list of polynomials
128 is contained in the ideal generated by the second list. For this test to always succeed,
129 the second list must be a Grobner basis */
130
131poly_grobner_subsetp([x+y,x-y],[x,y],[x,y]);
132
133/* POLY_POLYSATURATION_EXTENSION implements the famous Rabinowitz trick. */
134poly_polysaturation_extension([x,y],[x^2,y^3],[x,y],[u,v]);
135
136poly_saturation_extension([x,y],[x^2,y^3],[x,y],[u,v]);
137
138/* POLY_IDEAL_POLYSATURATION1 for a given ideal I and polynomials f, g, ..., finds
139 the colon ideal I : f^inf : g^inf : ... */
140poly_ideal_polysaturation1([x,y],[x^2,y^3],[x,y]);
141
142/* POLY_IDEAL_SATURATION for given ideals I and J computes the ideal I : J^inf. */
143poly_ideal_saturation([x,y],[x^2,y^3],[x,y]);
144
145/* POLY_IDEAL_POLYSATURATION for a given ideal I and a sequence of ideals J1, J2, J3, ...,
146 finds the ideal I : J1^inf : J2^inf : J3^inf : ... */
147poly_ideal_polysaturation([x,y],[[x^2],[y^3]],[x,y]);
148poly_ideal_polysaturation([x^4-y^4], [[x-y],[x^2+y^2, x+y]],[x,y]);
149
150/* POLY_COLON_IDEAL finds the reduced Grobner basis of the colon ideal I:J, i.e. the set of polynomials h
151 such that there is a polynomial F in J for which H*F is in I */
152
153poly_colon_ideal([x^2*y],[y],[x,y]);
154
155/* POLY_BUCHBERGER_CRITERION verifies whether a given set of polynomials is a Grobner basis with respect
156 to the current term order */
157poly_buchberger_criterion([x,y],[x,y]);
158poly_buchberger_criterion([x-y,x+y],[x,y]);
159
160/* Grobner basis associated with Enneper minimal surface */
161poly_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
162poly_reduced_grobner([x-3*u-3*u*v^2+u^3,y-3*v-3*u^2*v+v^3,z-3*u^2+3*v^2],[u,v,x,y,z]);
163
164/* Cyclic roots of degree 5 */
165poly_reduced_grobner([x+y+z+u+v,x*y+y*z+z*u+u*v+v*x,x*y*z+y*z*u+z*u*v+u*v*x+v*x*y,x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z,x*y*z*u*v-1],[u,v,x,y,z]);
166
167/* The next example demonstrates the use of the switch
168 POLY_RETURN_TERM_LIST, which, if set to TRUE, makes the results to
169 appear as lists of terms listed in the current monomial order rather
170 than a general form expression */
171
172block([orders:[lex,grlex,grevlex,invlex]],
173for i:1 thru length(orders) do (
174 print(ev([orders[i], poly_expand((x^2+x+y)^3,[x,y])], poly_monomial_order=orders[i]))
175 )
176), poly_return_term_list=true;
177
178/* Grobner bases can be computed over coefficient ring of maxima general expressions */
179poly_grobner([x*y-1,x+y],[x]);
180
181/* A tough example learned from Cox */
182poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]);
183
184/* An even tougher example of Cox */
185poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]);
186
187/* We can also perform Grobner basis calculations modulo prime */
188poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]), modulus=3;
189
190/* We can also explicitly ask for the Grobner basis to be calculated using only
191 integer coefficients. An error will result if this assertion is not satisfied. */
192poly_grobner([x^5+y^4+z^3-1,x^3+y^3+z^2-1], [x,y,z]), poly_coefficient_ring='ring_of_integers;
193
194/* The following several tests demonstrate the use of jet variables useful in processing differential equations */
195
196
197/* Clear some variables */
198kill(ode,t,x,y,u,v,r);
199
200/* Set up dependencies */
201depends([x,y,u,v,r],t);
202
203/* These are equations representing mathematical pendulum */
204ode:[x^2+y^2-c,'diff(x,t)-u,'diff(y,t)-v,'diff(u,t)+r*x,'diff(v,t)+r*y+1];
205
206jet_vars(k):=apply(append,reverse(makelist(['diff(x,t,j),'diff(y,t,j),'diff(u,t,j),'diff(v,t,j),'diff(r,t,j)],j,0,k+1)));
207
208/* Define k-fold prolongation */
209prolongate(k):=apply(append,makelist(diff(ode,t,j),j,0,k));
210
211/* Define Grobner basis of k-fold prolongation */
212gb(k):=poly_reduced_grobner(prolongate(k),jet_vars(k));
213
214/* Define the l-th projection of the k-th prolongation */
215projection(l, k):=poly_elimination_ideal(prolongate(k),5*l,jet_vars(k));
216
217/* Compute some projections */
218projection(0, 0);
219projection(1, 1);
Note: See TracBrowser for help on using the repository browser.