;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "TERMLIST" (:use :cl :monomial :ring :ring-and-order :term) (:export "TERMLIST-SUGAR" "TERMLIST-CONTRACT" "TERMLIST-EXTEND" "TERMLIST-ADD-VARIABLES" "TERMLIST-LT" "TERMLIST-LM" "TERMLIST-LC" "SCALAR-MUL" "SCALAR-TIMES-TERMLIST" "TERM-MUL-LST" "TERMLIST-TIMES-TERM" "TERM-TIMES-TERMLIST" "MONOM-TIMES-TERM" "MONOM-TIMES-TERMLIST" "TERMLIST-UMINUS" "TERMLIST-ADD" "TERMLIST-SUB" "TERMLIST-MUL" "TERMLIST-UNIT" "TERMLIST-EXPT")) (in-package :termlist) (defun termlist-sugar (p &aux (sugar -1)) (declare (fixnum sugar)) (dolist (term p sugar) (setf sugar (max sugar (term-sugar term))))) (defun termlist-contract (p &optional (k 1)) "Eliminate first K variables from a polynomial P." (mapcar #'(lambda (term) (make-term (monom-contract k (term-monom term)) (term-coeff term))) p)) (defun termlist-extend (p &optional (m (make-monom 1 :initial-exponent 0))) "Extend every monomial in a polynomial P by inserting at the beginning of every monomial the list of powers M." (mapcar #'(lambda (term) (make-term (monom-append m (term-monom term)) (term-coeff term))) p)) (defun termlist-add-variables (p n) "Add N variables to a polynomial P by inserting zero powers at the beginning of each monomial." (declare (fixnum n)) (mapcar #'(lambda (term) (make-term (monom-append (make-monom n :initial-exponent 0) (term-monom term)) (term-coeff term))) p)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Low-level polynomial arithmetic done on ;; lists of terms ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro termlist-lt (p) `(car ,p)) (defun termlist-lm (p) (term-monom (termlist-lt p))) (defun termlist-lc (p) (term-coeff (termlist-lt p))) (define-modify-macro scalar-mul (c) coeff-mul) (defun scalar-times-termlist (ring c p) "Multiply scalar C by a polynomial P. This function works even if there are divisors of 0." (declare (ring ring)) (mapcan #'(lambda (term) (let ((c1 (funcall (ring-mul ring) c (term-coeff term)))) (unless (funcall (ring-zerop ring) c1) (list (make-term (term-monom term) c1))))) p)) (defun term-mul-lst (ring term1 term2) "A special version of term multiplication. Returns (LIST TERM) where TERM is the product of the terms TERM1 TERM2, or NIL when the product is 0. This definition takes care of divisors of 0 in the coefficient ring." (declare (ring ring)) (let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2)))) (unless (funcall (ring-zerop ring) c) (list (make-term (monom-mul (term-monom term1) (term-monom term2)) c))))) (defun term-times-termlist (ring term f) (declare (type ring ring)) (mapcan #'(lambda (term-f) (term-mul-lst ring term term-f)) f)) (defun termlist-times-term (ring f term) (declare (ring ring)) (mapcan #'(lambda (term-f) (term-mul-lst ring term-f term)) f)) (defun monom-times-term (m term) (make-term (monom-mul m (term-monom term)) (term-coeff term))) (defun monom-times-termlist (m f) (cond ((null f) nil) (t (mapcar #'(lambda (x) (monom-times-term m x)) f)))) (defun termlist-uminus (ring f) (declare (ring ring)) (mapcar #'(lambda (x) (make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x)))) f)) (defun termlist-add (ring p q) (declare (type list p q) (ring-and-order ring)) (do (r) ((cond ((endp p) (setf r (revappend r q)) t) ((endp q) (setf r (revappend r p)) t) (t (multiple-value-bind (lm-greater lm-equal) (funcall (ring-and-order-order ring) (termlist-lm p) (termlist-lm q)) (cond (lm-equal (let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q)))) (unless (funcall (ring-zerop ring) s) ;check for cancellation (setf r (cons (make-term (termlist-lm p) s) r))) (setf p (cdr p) q (cdr q)))) (lm-greater (setf r (cons (car p) r) p (cdr p))) (t (setf r (cons (car q) r) q (cdr q))))) nil)) r))) (defun termlist-sub (ring p q) (declare (type list p q) (ring-and-order ring)) (do (r) ((cond ((endp p) (setf r (revappend r (termlist-uminus ring q))) t) ((endp q) (setf r (revappend r p)) t) (t (multiple-value-bind (mgreater mequal) (funcall (ring-and-order-order ring) (termlist-lm p) (termlist-lm q)) (cond (mequal (let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q)))) (unless (funcall (ring-zerop ring) s) ;check for cancellation (setf r (cons (make-term (termlist-lm p) s) r))) (setf p (cdr p) q (cdr q)))) (mgreater (setf r (cons (car p) r) p (cdr p))) (t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r) q (cdr q))))) nil)) r))) ;; Multiplication of polynomials ;; Non-destructive version (defun termlist-mul (ring p q) (declare (ring ring)) (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL) ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q ((endp (cdr p)) (term-times-termlist ring (car p) q)) ((endp (cdr q)) (termlist-times-term ring p (car q))) (t (let ((head (term-mul-lst ring (termlist-lt p) (termlist-lt q))) (tail (termlist-add ring (term-times-termlist ring (car p) (cdr q)) (termlist-mul ring (cdr p) q)))) (cond ((null head) tail) ((null tail) head) (t (nconc head tail))))))) (defun termlist-unit (ring dim) (declare (fixnum dim) (ring ring)) (list (make-term (make-monom :dimension dim) (funcall (ring-unit ring))))) (defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly)))) (declare (type fixnum n dim) (ring ring)) (cond ((minusp n) (error "termlist-expt: Negative exponent.")) ((endp poly) (if (zerop n) (termlist-unit ring dim) nil)) (t (do ((k 1 (ash k 1)) (q poly (termlist-mul ring q q)) ;keep squaring (p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p))) ((> k n) p) (declare (fixnum k))))))