| 1 | ;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | ;;---------------------------------------------------------------- | 
|---|
| 23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS | 
|---|
| 24 | ;;---------------------------------------------------------------- | 
|---|
| 25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists: | 
|---|
| 26 | ;; | 
|---|
| 27 | ;;      monom:  (n1 n2 ... nk) where ni are non-negative integers | 
|---|
| 28 | ;; | 
|---|
| 29 | ;; However, lists may be implemented as other sequence types, | 
|---|
| 30 | ;; so the flexibility to change the representation should be | 
|---|
| 31 | ;; maintained in the code to use general operations on sequences | 
|---|
| 32 | ;; whenever possible. The optimization for the actual representation | 
|---|
| 33 | ;; should be left to declarations and the compiler. | 
|---|
| 34 | ;;---------------------------------------------------------------- | 
|---|
| 35 | ;; EXAMPLES: Suppose that variables are x and y. Then | 
|---|
| 36 | ;; | 
|---|
| 37 | ;;      Monom x*y^2 ---> #(1 2) | 
|---|
| 38 | ;; | 
|---|
| 39 | ;;---------------------------------------------------------------- | 
|---|
| 40 |  | 
|---|
| 41 | (defpackage "MONOMIAL" | 
|---|
| 42 | (:use :cl) | 
|---|
| 43 | (:export "MAKE-MONOM" | 
|---|
| 44 | "MONOM-ELT" | 
|---|
| 45 | "MONOM-DIMENSION" | 
|---|
| 46 | "MONOM-TOTAL-DEGREE" | 
|---|
| 47 | "MONOM-SUGAR" | 
|---|
| 48 | "MONOM-DIV" | 
|---|
| 49 | "MONOM-MUL" | 
|---|
| 50 | "MONOM-DIVIDES-P" | 
|---|
| 51 | "MONOM-DIVIDES-MONOM-LCM-P" | 
|---|
| 52 | "MONOM-LCM-DIVIDES-MONOM-LCM-P" | 
|---|
| 53 | "MONOM-DIVISIBLE-BY-P" | 
|---|
| 54 | "MONOM-REL-PRIME-P" | 
|---|
| 55 | "MONOM-EQUAL-P" | 
|---|
| 56 | "MONOM-LCM" | 
|---|
| 57 | "MONOM-GCD" | 
|---|
| 58 | "MONOM-MAP" | 
|---|
| 59 | "MONOM-APPEND" | 
|---|
| 60 | "MONOM-CONTRACT" | 
|---|
| 61 | "MONOM-EXPONENTS")) | 
|---|
| 62 |  | 
|---|
| 63 | (in-package :monomial) | 
|---|
| 64 |  | 
|---|
| 65 | (deftype exponent () | 
|---|
| 66 | "Type of exponent in a monomial." | 
|---|
| 67 | 'fixnum) | 
|---|
| 68 |  | 
|---|
| 69 | (deftype monom (&optional dim) | 
|---|
| 70 | "Type of monomial." | 
|---|
| 71 | `(simple-array exponent (,dim))) | 
|---|
| 72 |  | 
|---|
| 73 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 74 | ;; | 
|---|
| 75 | ;; Construction of monomials | 
|---|
| 76 | ;; | 
|---|
| 77 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 78 |  | 
|---|
| 79 | (defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p) | 
|---|
| 80 | (initial-element 0 initial-element-supplied-p)) | 
|---|
| 81 | "Make a monomial with DIM variables. Additional argument | 
|---|
| 82 | INITIAL-CONTENTS specifies the list of powers of the consecutive | 
|---|
| 83 | variables. The alternative additional argument INITIAL-ELEMENT | 
|---|
| 84 | specifies the common power for all variables." | 
|---|
| 85 | ;;(declare (fixnum dim)) | 
|---|
| 86 | `(make-array ,dim | 
|---|
| 87 | :element-type 'exponent | 
|---|
| 88 | ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents)) | 
|---|
| 89 | ,@(when initial-element-supplied-p `(:initial-element ,initial-element)))) | 
|---|
| 90 |  | 
|---|
| 91 |  | 
|---|
| 92 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 93 | ;; | 
|---|
| 94 | ;; Operations on monomials | 
|---|
| 95 | ;; | 
|---|
| 96 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 97 |  | 
|---|
| 98 | (defmacro monom-elt (m index) | 
|---|
| 99 | "Return the power in the monomial M of variable number INDEX." | 
|---|
| 100 | `(elt ,m ,index)) | 
|---|
| 101 |  | 
|---|
| 102 | (defun monom-dimension (m) | 
|---|
| 103 | "Return the number of variables in the monomial M." | 
|---|
| 104 | (length m)) | 
|---|
| 105 |  | 
|---|
| 106 | (defun monom-total-degree (m &optional (start 0) (end (length m))) | 
|---|
| 107 | "Return the todal degree of a monomoal M. Optinally, a range | 
|---|
| 108 | of variables may be specified with arguments START and END." | 
|---|
| 109 | (declare (type monom m) (fixnum start end)) | 
|---|
| 110 | (reduce #'+ m :start start :end end)) | 
|---|
| 111 |  | 
|---|
| 112 | (defun monom-sugar (m &aux (start 0) (end (length m))) | 
|---|
| 113 | "Return the sugar of a monomial M. Optinally, a range | 
|---|
| 114 | of variables may be specified with arguments START and END." | 
|---|
| 115 | (declare (type monom m) (fixnum start end)) | 
|---|
| 116 | (monom-total-degree m start end)) | 
|---|
| 117 |  | 
|---|
| 118 | (defun monom-div (m1 m2 &aux (result (copy-seq m1))) | 
|---|
| 119 | "Divide monomial M1 by monomial M2." | 
|---|
| 120 | (declare (type monom m1 m2 result)) | 
|---|
| 121 | (map-into result #'- m1 m2)) | 
|---|
| 122 |  | 
|---|
| 123 | (defun monom-mul (m1 m2  &aux (result (copy-seq m1))) | 
|---|
| 124 | "Multiply monomial M1 by monomial M2." | 
|---|
| 125 | (declare (type monom m1 m2 result)) | 
|---|
| 126 | (map-into result #'+ m1 m2)) | 
|---|
| 127 |  | 
|---|
| 128 | (defun monom-divides-p (m1 m2) | 
|---|
| 129 | "Returns T if monomial M1 divides monomial M2, NIL otherwise." | 
|---|
| 130 | (declare (type monom m1 m2)) | 
|---|
| 131 | (every #'<= m1 m2)) | 
|---|
| 132 |  | 
|---|
| 133 | (defun monom-divides-monom-lcm-p (m1 m2 m3) | 
|---|
| 134 | "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise." | 
|---|
| 135 | (declare (type monom m1 m2 m3)) | 
|---|
| 136 | (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3)) | 
|---|
| 137 |  | 
|---|
| 138 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4) | 
|---|
| 139 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise." | 
|---|
| 140 | (declare (type monom m1 m2 m3 m4)) | 
|---|
| 141 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4)) | 
|---|
| 142 |  | 
|---|
| 143 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4) | 
|---|
| 144 | "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise." | 
|---|
| 145 | (declare (type monom m1 m2 m3 m4)) | 
|---|
| 146 | (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4)) | 
|---|
| 147 |  | 
|---|
| 148 | (defun monom-divisible-by-p (m1 m2) | 
|---|
| 149 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise." | 
|---|
| 150 | (declare (type monom m1 m2)) | 
|---|
| 151 | (every #'>= m1 m2)) | 
|---|
| 152 |  | 
|---|
| 153 | (defun monom-rel-prime-p (m1 m2) | 
|---|
| 154 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)." | 
|---|
| 155 | (declare (type monom m1 m2)) | 
|---|
| 156 | (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2)) | 
|---|
| 157 |  | 
|---|
| 158 | (defun monom-equal-p (m1 m2) | 
|---|
| 159 | "Returns T if two monomials M1 and M2 are equal." | 
|---|
| 160 | (declare (type monom m1 m2)) | 
|---|
| 161 | (every #'= m1 m2)) | 
|---|
| 162 |  | 
|---|
| 163 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1))) | 
|---|
| 164 | "Returns least common multiple of monomials M1 and M2." | 
|---|
| 165 | (declare (type monom m1 m2)) | 
|---|
| 166 | (map-into result #'max m1 m2)) | 
|---|
| 167 |  | 
|---|
| 168 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1))) | 
|---|
| 169 | "Returns greatest common divisor of monomials M1 and M2." | 
|---|
| 170 | (declare (type monom m1 m2)) | 
|---|
| 171 | (map-into result #'min m1 m2)) | 
|---|
| 172 |  | 
|---|
| 173 | (defun monom-depends-p (m k) | 
|---|
| 174 | "Return T if the monomial M depends on variable number K." | 
|---|
| 175 | (declare (type monom m) (fixnum k)) | 
|---|
| 176 | (plusp (elt m k))) | 
|---|
| 177 |  | 
|---|
| 178 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m))) | 
|---|
| 179 | `(map-into ,result ,fun ,m ,@ml)) | 
|---|
| 180 |  | 
|---|
| 181 | (defmacro monom-append (m1 m2) | 
|---|
| 182 | `(concatenate 'monom ,m1 ,m2)) | 
|---|
| 183 |  | 
|---|
| 184 | (defmacro monom-contract (k m) | 
|---|
| 185 | `(subseq ,m ,k)) | 
|---|
| 186 |  | 
|---|
| 187 | (defun monom-exponents (m) | 
|---|
| 188 | (declare (type monom m)) | 
|---|
| 189 | (coerce m 'list)) | 
|---|