close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monom.lisp@ 3909

Last change on this file since 3909 was 3876, checked in by Marek Rychlik, 8 years ago

* empty log message *

File size: 23.4 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "MONOM"
23 (:use :cl :utils :copy)
24 (:export "MONOM"
25 "TERM"
26 "EXPONENT"
27 "MONOM-DIMENSION"
28 "MONOM-EXPONENTS"
29 "UNIVERSAL-EQUALP"
30 "MONOM-ELT"
31 "TOTAL-DEGREE"
32 "SUGAR"
33 "MULTIPLY-BY"
34 "DIVIDE-BY"
35 "DIVIDE"
36 "MULTIPLY-2"
37 "MULTIPLY"
38 "DIVIDES-P"
39 "DIVIDES-LCM-P"
40 "LCM-DIVIDES-LCM-P"
41 "LCM-EQUAL-LCM-P"
42 "DIVISIBLE-BY-P"
43 "REL-PRIME-P"
44 "UNIVERSAL-LCM"
45 "UNIVERSAL-GCD"
46 "DEPENDS-P"
47 "LEFT-TENSOR-PRODUCT-BY"
48 "RIGHT-TENSOR-PRODUCT-BY"
49 "LEFT-CONTRACT"
50 "MAKE-MONOM-VARIABLE"
51 "MAKE-MONOM-CONSTANT"
52 "MAKE-TERM-CONSTANT"
53 "->LIST"
54 "->INFIX"
55 "LEX>"
56 "GRLEX>"
57 "REVLEX>"
58 "GREVLEX>"
59 "INVLEX>"
60 "REVERSE-MONOMIAL-ORDER"
61 "MAKE-ELIMINATION-ORDER-FACTORY"
62 "TERM-COEFF"
63 "UNARY-MINUS"
64 "UNIVERSAL-ZEROP")
65 (:documentation
66 "This package implements basic operations on monomials, including
67various monomial orders.
68
69DATA STRUCTURES: Conceptually, monomials can be represented as lists:
70
71 monom: (n1 n2 ... nk) where ni are non-negative integers
72
73However, lists may be implemented as other sequence types, so the
74flexibility to change the representation should be maintained in the
75code to use general operations on sequences whenever possible. The
76optimization for the actual representation should be left to
77declarations and the compiler.
78
79EXAMPLES: Suppose that variables are x and y. Then
80
81 Monom x*y^2 ---> (1 2) "))
82
83(in-package :monom)
84
85(proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 0)))
86
87(deftype exponent ()
88 "Type of exponent in a monomial."
89 'fixnum)
90
91(defclass monom ()
92 ((exponents :initarg :exponents :accessor monom-exponents
93 :documentation "The powers of the variables."))
94 ;; default-initargs are not needed, they are handled by SHARED-INITIALIZE
95 ;;(:default-initargs :dimension 'foo :exponents 'bar :exponent 'baz)
96 (:documentation
97 "Implements a monomial, i.e. a product of powers
98of variables, like X*Y^2."))
99
100(defmethod print-object ((self monom) stream)
101 (print-unreadable-object (self stream :type t :identity t)
102 (with-accessors ((exponents monom-exponents))
103 self
104 (format stream "EXPONENTS=~A"
105 exponents))))
106
107(defmethod initialize-instance :after ((self monom)
108 &key
109 (dimension 0 dimension-supplied-p)
110 (exponents nil exponents-supplied-p)
111 (exponent 0)
112 &allow-other-keys
113 )
114 "The following INITIALIZE-INSTANCE method allows instance initialization
115of a MONOM in a style similar to MAKE-ARRAY, e.g.:
116
117 (MAKE-INSTANCE 'MONOM :EXPONENTS '(1 2 3)) --> #<MONOM EXPONENTS=#(1 2 3)>
118 (MAKE-INSTANCE 'MONOM :DIMENSION 3) --> #<MONOM EXPONENTS=#(0 0 0)>
119 (MAKE-INSTANCE 'MONOM :DIMENSION 3 :EXPONENT 7) --> #<MONOM EXPONENTS=#(7 7 7)>
120
121If both DIMENSION and EXPONENTS are supplied, they must be compatible,
122i.e. the length of EXPONENTS must be equal DIMENSION. If EXPONENTS
123is not supplied, a monom with repeated value EXPONENT is created.
124By default EXPONENT is 0, which results in a constant monomial.
125"
126 (cond
127 (exponents-supplied-p
128 (when (and dimension-supplied-p
129 (/= dimension (length exponents)))
130 (error "EXPONENTS (~A) must have supplied length DIMENSION (~A)"
131 exponents dimension))
132 (let ((dim (length exponents)))
133 (setf (slot-value self 'exponents) (make-array dim :initial-contents exponents))))
134 (dimension-supplied-p
135 ;; when all exponents are to be identical
136 (setf (slot-value self 'exponents) (make-array (list dimension)
137 :initial-element exponent
138 :element-type 'exponent)))
139 (t
140 (error "Initarg DIMENSION or EXPONENTS must be supplied."))))
141
142(defgeneric monom-dimension (self)
143 (:method ((self monom))
144 (length (monom-exponents self))))
145
146(defgeneric universal-equalp (object1 object2)
147 (:documentation "Returns T iff OBJECT1 and OBJECT2 are equal.")
148 (:method ((object1 cons) (object2 cons)) (every #'universal-equalp object1 object2))
149 (:method ((object1 number) (object2 number)) (= object1 object2))
150 (:method ((m1 monom) (m2 monom))
151 "Returns T iff monomials M1 and M2 have identical EXPONENTS."
152 (equalp (monom-exponents m1) (monom-exponents m2))))
153
154(defgeneric monom-elt (m index)
155 (:documentation "Return the power in the monomial M of variable number INDEX.")
156 (:method ((m monom) index)
157 "Return the power in the monomial M of variable number INDEX."
158 (with-slots (exponents)
159 m
160 (elt exponents index))))
161
162(defgeneric (setf monom-elt) (new-value m index)
163 (:documentation "Set the power in the monomial M of variable number INDEX.")
164 (:method (new-value (m monom) index)
165 (with-slots (exponents)
166 m
167 (setf (elt exponents index) new-value))))
168
169(defgeneric total-degree (m &optional start end)
170 (:documentation "Return the total degree of a monomoal M. Optinally, a range
171of variables may be specified with arguments START and END.")
172 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
173 (declare (type fixnum start end))
174 (with-slots (exponents)
175 m
176 (reduce #'+ exponents :start start :end end))))
177
178(defgeneric sugar (m &optional start end)
179 (:documentation "Return the sugar of a monomial M. Optinally, a range
180of variables may be specified with arguments START and END.")
181 (:method ((m monom) &optional (start 0) (end (monom-dimension m)))
182 (declare (type fixnum start end))
183 (total-degree m start end)))
184
185(defgeneric multiply-by (self other)
186 (:documentation "Multiply SELF by OTHER, return SELF.")
187 (:method ((self number) (other number)) (* self other))
188 (:method ((self monom) (other monom))
189 (with-slots ((exponents1 exponents))
190 self
191 (with-slots ((exponents2 exponents))
192 other
193 (unless (= (length exponents1) (length exponents2))
194 (error "Incompatible dimensions"))
195 (map-into exponents1 #'+ exponents1 exponents2)))
196 self))
197
198(defgeneric divide-by (self other)
199 (:documentation "Divide SELF by OTHER, return SELF.")
200 (:method ((self number) (other number)) (/ self other))
201 (:method ((self monom) (other monom))
202 (with-slots ((exponents1 exponents))
203 self
204 (with-slots ((exponents2 exponents))
205 other
206 (unless (= (length exponents1) (length exponents2))
207 (error "divide-by: Incompatible dimensions."))
208 (unless (every #'>= exponents1 exponents2)
209 (error "divide-by: Negative power would result."))
210 (map-into exponents1 #'- exponents1 exponents2)))
211 self))
212
213(defmethod copy-instance :around ((object monom) &rest initargs &key &allow-other-keys)
214 "An :AROUND method of COPY-INSTANCE. It replaces
215exponents with a fresh copy of the sequence."
216 (declare (ignore object initargs))
217 (let ((copy (call-next-method)))
218 (setf (monom-exponents copy) (copy-seq (monom-exponents copy)))
219 copy))
220
221(defun multiply-2 (object1 object2)
222 "Multiply OBJECT1 by OBJECT2"
223 (multiply-by (copy-instance object1) (copy-instance object2)))
224
225(defun multiply (&rest factors)
226 "Non-destructively multiply list FACTORS."
227 (cond ((endp factors) 1)
228 ((endp (rest factors)) (first factors))
229 (t (reduce #'multiply-2 factors :initial-value 1))))
230
231(defun divide (numerator &rest denominators)
232 "Non-destructively divide object NUMERATOR by product of DENOMINATORS."
233 (cond ((endp denominators)
234 (divide-by 1 numerator))
235 (t (divide-by (copy-instance numerator) (apply #'multiply denominators)))))
236
237(defgeneric divides-p (object1 object2)
238 (:documentation "Returns T if OBJECT1 divides OBJECT2.")
239 (:method ((m1 monom) (m2 monom))
240 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
241 (with-slots ((exponents1 exponents))
242 m1
243 (with-slots ((exponents2 exponents))
244 m2
245 (every #'<= exponents1 exponents2)))))
246
247(defgeneric divides-lcm-p (object1 object2 object3)
248 (:documentation "Returns T if OBJECT1 divides LCM(OBJECT2,OBJECT3), NIL otherwise.")
249 (:method ((m1 monom) (m2 monom) (m3 monom))
250 "Returns T if monomial M1 divides LCM(M2,M3), NIL otherwise."
251 (with-slots ((exponents1 exponents))
252 m1
253 (with-slots ((exponents2 exponents))
254 m2
255 (with-slots ((exponents3 exponents))
256 m3
257 (every #'(lambda (x y z) (<= x (max y z)))
258 exponents1 exponents2 exponents3))))))
259
260(defgeneric lcm-divides-lcm-p (object1 object2 object3 object4)
261 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
262 "Returns T if monomial LCM(M1,M2) divides LCM(M3,M4), NIL otherwise."
263 (with-slots ((exponents1 exponents))
264 m1
265 (with-slots ((exponents2 exponents))
266 m2
267 (with-slots ((exponents3 exponents))
268 m3
269 (with-slots ((exponents4 exponents))
270 m4
271 (every #'(lambda (x y z w) (<= (max x y) (max z w)))
272 exponents1 exponents2 exponents3 exponents4)))))))
273
274(defgeneric monom-lcm-equal-lcm-p (object1 object2 object3 object4)
275 (:method ((m1 monom) (m2 monom) (m3 monom) (m4 monom))
276 "Returns T if monomial LCM(M1,M2) equals LCM(M3,M4), NIL otherwise."
277 (with-slots ((exponents1 exponents))
278 m1
279 (with-slots ((exponents2 exponents))
280 m2
281 (with-slots ((exponents3 exponents))
282 m3
283 (with-slots ((exponents4 exponents))
284 m4
285 (every
286 #'(lambda (x y z w) (= (max x y) (max z w)))
287 exponents1 exponents2 exponents3 exponents4)))))))
288
289(defgeneric divisible-by-p (object1 object2)
290 (:documentation "Return T if OBJECT1 is divisible by OBJECT2.")
291 (:method ((m1 monom) (m2 monom))
292 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
293 (with-slots ((exponents1 exponents))
294 m1
295 (with-slots ((exponents2 exponents))
296 m2
297 (every #'>= exponents1 exponents2)))))
298
299(defgeneric rel-prime-p (object1 object2)
300 (:documentation "Returns T if objects OBJECT1 and OBJECT2 are relatively prime.")
301 (:method ((m1 monom) (m2 monom))
302 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
303 (with-slots ((exponents1 exponents))
304 m1
305 (with-slots ((exponents2 exponents))
306 m2
307 (every #'(lambda (x y) (zerop (min x y))) exponents1 exponents2)))))
308
309(defgeneric universal-lcm (object1 object2)
310 (:documentation "Returns the multiple of objects OBJECT1 and OBJECT2.")
311 (:method ((m1 monom) (m2 monom))
312 "Returns least common multiple of monomials M1 and M2."
313 (with-slots ((exponents1 exponents))
314 m1
315 (with-slots ((exponents2 exponents))
316 m2
317 (let* ((exponents (copy-seq exponents1)))
318 (map-into exponents #'max exponents1 exponents2)
319 (make-instance 'monom :exponents exponents))))))
320
321
322(defgeneric universal-gcd (object1 object2)
323 (:documentation "Returns GCD of objects OBJECT1 and OBJECT2")
324 (:method ((object1 number) (object2 number)) (gcd object1 object2))
325 (:method ((m1 monom) (m2 monom))
326 "Returns greatest common divisor of monomials M1 and M2."
327 (with-slots ((exponents1 exponents))
328 m1
329 (with-slots ((exponents2 exponents))
330 m2
331 (let* ((exponents (copy-seq exponents1)))
332 (map-into exponents #'min exponents1 exponents2)
333 (make-instance 'monom :exponents exponents))))))
334
335(defgeneric depends-p (object k)
336 (:documentation "Returns T iff object OBJECT depends on variable K.")
337 (:method ((m monom) k)
338 "Return T if the monomial M depends on variable number K."
339 (declare (type fixnum k))
340 (with-slots (exponents)
341 m
342 (plusp (elt exponents k)))))
343
344(defgeneric left-tensor-product-by (self other)
345 (:documentation "Returns a tensor product SELF by OTHER, stored into
346 SELF. Return SELF.")
347 (:method ((self monom) (other monom))
348 (with-slots ((exponents1 exponents))
349 self
350 (with-slots ((exponents2 exponents))
351 other
352 (setf exponents1 (concatenate 'vector exponents2 exponents1))))
353 self))
354
355(defgeneric right-tensor-product-by (self other)
356 (:documentation "Returns a tensor product of OTHER by SELF, stored
357 into SELF. Returns SELF.")
358 (:method ((self monom) (other monom))
359 (with-slots ((exponents1 exponents))
360 self
361 (with-slots ((exponents2 exponents))
362 other
363 (setf exponents1 (concatenate 'vector exponents1 exponents2))))
364 self))
365
366(defgeneric left-contract (self k)
367 (:documentation "Drop the first K variables in object SELF.")
368 (:method ((self monom) k)
369 "Drop the first K variables in monomial M."
370 (declare (fixnum k))
371 (with-slots (exponents)
372 self
373 (setf exponents (subseq exponents k)))
374 self))
375
376(defun make-monom-variable (nvars pos &optional (power 1)
377 &aux (m (make-instance 'monom :dimension nvars)))
378 "Construct a monomial in the polynomial ring
379RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
380which represents a single variable. It assumes number of variables
381NVARS and the variable is at position POS. Optionally, the variable
382may appear raised to power POWER. "
383 (declare (type fixnum nvars pos power) (type monom m))
384 (with-slots (exponents)
385 m
386 (setf (elt exponents pos) power)
387 m))
388
389(defun make-monom-constant (dimension)
390 (make-instance 'monom :dimension dimension))
391
392;; pure lexicographic
393(defgeneric lex> (p q &optional start end)
394 (:documentation "Return T if P>Q with respect to lexicographic
395order, otherwise NIL. The second returned value is T if P=Q,
396otherwise it is NIL.")
397 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
398 (declare (type fixnum start end))
399 (do ((i start (1+ i)))
400 ((>= i end) (values nil t))
401 (cond
402 ((> (monom-elt p i) (monom-elt q i))
403 (return-from lex> (values t nil)))
404 ((< (monom-elt p i) (monom-elt q i))
405 (return-from lex> (values nil nil)))))))
406
407;; total degree order, ties broken by lexicographic
408(defgeneric grlex> (p q &optional start end)
409 (:documentation "Return T if P>Q with respect to graded
410lexicographic order, otherwise NIL. The second returned value is T if
411P=Q, otherwise it is NIL.")
412 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
413 (declare (type monom p q) (type fixnum start end))
414 (let ((d1 (total-degree p start end))
415 (d2 (total-degree q start end)))
416 (declare (type fixnum d1 d2))
417 (cond
418 ((> d1 d2) (values t nil))
419 ((< d1 d2) (values nil nil))
420 (t
421 (lex> p q start end))))))
422
423;; reverse lexicographic
424(defgeneric revlex> (p q &optional start end)
425 (:documentation "Return T if P>Q with respect to reverse
426lexicographic order, NIL otherwise. The second returned value is T if
427P=Q, otherwise it is NIL. This is not and admissible monomial order
428because some sets do not have a minimal element. This order is useful
429in constructing other orders.")
430 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
431 (declare (type fixnum start end))
432 (do ((i (1- end) (1- i)))
433 ((< i start) (values nil t))
434 (declare (type fixnum i))
435 (cond
436 ((< (monom-elt p i) (monom-elt q i))
437 (return-from revlex> (values t nil)))
438 ((> (monom-elt p i) (monom-elt q i))
439 (return-from revlex> (values nil nil)))))))
440
441
442;; total degree, ties broken by reverse lexicographic
443(defgeneric grevlex> (p q &optional start end)
444 (:documentation "Return T if P>Q with respect to graded reverse
445lexicographic order, NIL otherwise. The second returned value is T if
446P=Q, otherwise it is NIL.")
447 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
448 (declare (type fixnum start end))
449 (let ((d1 (total-degree p start end))
450 (d2 (total-degree q start end)))
451 (declare (type fixnum d1 d2))
452 (cond
453 ((> d1 d2) (values t nil))
454 ((< d1 d2) (values nil nil))
455 (t
456 (revlex> p q start end))))))
457
458(defgeneric invlex> (p q &optional start end)
459 (:documentation "Return T if P>Q with respect to inverse
460lexicographic order, NIL otherwise The second returned value is T if
461P=Q, otherwise it is NIL.")
462 (:method ((p monom) (q monom) &optional (start 0) (end (monom-dimension p)))
463 (declare (type fixnum start end))
464 (do ((i (1- end) (1- i)))
465 ((< i start) (values nil t))
466 (declare (type fixnum i))
467 (cond
468 ((> (monom-elt p i) (monom-elt q i))
469 (return-from invlex> (values t nil)))
470 ((< (monom-elt p i) (monom-elt q i))
471 (return-from invlex> (values nil nil)))))))
472
473(defun reverse-monomial-order (order)
474 "Create the inverse monomial order to the given monomial order ORDER."
475 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
476 (declare (type monom p q) (type fixnum start end))
477 (funcall order q p start end)))
478
479;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
480;;
481;; Order making functions
482;;
483;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
484
485;; This returns a closure with the same signature
486;; as all orders such as #'LEX>.
487(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
488 "It constructs an elimination order used for the 1-st elimination ideal,
489i.e. for eliminating the first variable. Thus, the order compares the degrees of the
490first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
491 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
492 (declare (type monom p q) (type fixnum start end))
493 (cond
494 ((> (monom-elt p start) (monom-elt q start))
495 (values t nil))
496 ((< (monom-elt p start) (monom-elt q start))
497 (values nil nil))
498 (t
499 (funcall secondary-elimination-order p q (1+ start) end)))))
500
501;; This returns a closure which is called with an integer argument.
502;; The result is *another closure* with the same signature as all
503;; orders such as #'LEX>.
504(defun make-elimination-order-factory (&optional
505 (primary-elimination-order #'lex>)
506 (secondary-elimination-order #'lex>))
507 "Return a function with a single integer argument K. This should be
508the number of initial K variables X[0],X[1],...,X[K-1], which precede
509remaining variables. The call to the closure creates a predicate
510which compares monomials according to the K-th elimination order. The
511monomial orders PRIMARY-ELIMINATION-ORDER and
512SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
513remaining variables, respectively, with ties broken by lexicographical
514order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
515which indicates that the first K variables appear with identical
516powers, then the result is that of a call to
517SECONDARY-ELIMINATION-ORDER applied to the remaining variables
518X[K],X[K+1],..."
519 #'(lambda (k)
520 (cond
521 ((<= k 0)
522 (error "K must be at least 1"))
523 ((= k 1)
524 (make-elimination-order-factory-1 secondary-elimination-order))
525 (t
526 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
527 (declare (type monom p q) (type fixnum start end))
528 (multiple-value-bind (primary equal)
529 (funcall primary-elimination-order p q start k)
530 (if equal
531 (funcall secondary-elimination-order p q k end)
532 (values primary nil))))))))
533
534(defclass term (monom)
535 ((coeff :initarg :coeff :accessor term-coeff))
536 (:default-initargs :coeff nil)
537 (:documentation "Implements a term, i.e. a product of a scalar
538and powers of some variables, such as 5*X^2*Y^3."))
539
540(defmethod update-instance-for-different-class :after ((old monom) (new term) &key (coeff 1))
541 "Converts OLD of class MONOM to a NEW of class TERM, initializing coefficient to COEFF."
542 (reinitialize-instance new :coeff coeff))
543
544(defmethod update-instance-for-different-class :after ((old term) (new term) &key (coeff (term-coeff old)))
545 "Converts OLD of class TERM to a NEW of class TERM, initializing coefficient to COEFF."
546 (reinitialize-instance new :coeff coeff))
547
548
549(defmethod print-object ((self term) stream)
550 (print-unreadable-object (self stream :type t :identity t)
551 (with-accessors ((exponents monom-exponents)
552 (coeff term-coeff))
553 self
554 (format stream "EXPONENTS=~A COEFF=~A"
555 exponents coeff))))
556
557(defmethod multiply-by ((self number) (other term))
558 (reinitialize-instance other :coeff (multiply self (term-coeff other))))
559
560(defmethod multiply-by ((self term) (other number))
561 (reinitialize-instance self :coeff (multiply (term-coeff self) other)))
562
563(defmethod divide-by ((self term) (other number))
564 (reinitialize-instance self :coeff (divide (term-coeff self) other)))
565
566(defun make-term-constant (dimension &optional (coeff 1))
567 (make-instance 'term :dimension dimension :coeff coeff))
568
569(defmethod universal-equalp ((term1 term) (term2 term))
570 "Returns T if TERM1 and TERM2 are equal as MONOM, and coefficients
571are UNIVERSAL-EQUALP."
572 (and (call-next-method)
573 (universal-equalp (term-coeff term1) (term-coeff term2))))
574
575(defmethod multiply-by :before ((self term) (other term))
576 "Destructively multiply terms SELF and OTHER and store the result into SELF.
577It returns SELF."
578 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
579
580(defmethod left-tensor-product-by :before ((self term) (other term))
581 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
582
583(defmethod right-tensor-product-by :before ((self term) (other term))
584 (setf (term-coeff self) (multiply-by (term-coeff self) (term-coeff other))))
585
586(defmethod divide-by :before ((self term) (other term))
587 (setf (term-coeff self) (divide-by (term-coeff self) (term-coeff other))))
588
589(defgeneric unary-minus (self)
590 (:documentation "Negate object SELF and return it.")
591 (:method ((self number)) (- self))
592 (:method ((self term))
593 (setf (term-coeff self) (unary-minus (term-coeff self)))
594 self))
595
596(defgeneric universal-zerop (self)
597 (:documentation "Return T iff SELF is zero.")
598 (:method ((self number)) (zerop self))
599 (:method ((self term))
600 (universal-zerop (term-coeff self))))
601
602(defgeneric ->list (self)
603 (:method ((self monom))
604 "A human-readable representation of a monomial SELF as a list of exponents."
605 (coerce (monom-exponents self) 'list))
606 (:method ((self term))
607 "A human-readable representation of a term SELF as a cons of the list of exponents and the coefficient."
608 (cons (coerce (monom-exponents self) 'list) (term-coeff self))))
609
610(defgeneric ->infix (self &optional vars)
611 (:documentation "Convert a symbolic polynomial SELF to infix form, using variables VARS. The default
612value of VARS is the corresponding slot value of SELF.")
613 (:method ((self monom) &optional vars)
614 "Convert a monomial SELF to infix form, using variable VARS to build the representation."
615 (with-slots (exponents)
616 self
617 (cons '*
618 (mapcan #'(lambda (var power)
619 (cond ((= power 0) nil)
620 ((= power 1) (list var))
621 (t (list `(expt ,var ,power)))))
622 vars (coerce exponents 'list)))))
623 (:method ((self term) &optional vars)
624 "Convert a term SELF to infix form, using variable VARS to build the representation."
625 (with-slots (exponents coeff)
626 self
627 (list* '* coeff
628 (mapcan #'(lambda (var power)
629 (cond ((= power 0) nil)
630 ((= power 1) (list var))
631 (t (list `(expt ,var ,power)))))
632 vars (coerce exponents 'list))))))
Note: See TracBrowser for help on using the repository browser.