1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (defpackage "BUCHBERGER"
|
---|
23 | (:use :cl :grobner-debug
|
---|
24 | :polynomial :division
|
---|
25 | :criterion :pair-queue :priority-queue
|
---|
26 | :ring
|
---|
27 | )
|
---|
28 | (:export "BUCHBERGER" "PARALLEL-BUCHBERGER")
|
---|
29 | (:documentation "Buchberger Algorithm Implementation."))
|
---|
30 |
|
---|
31 | (in-package :buchberger)
|
---|
32 |
|
---|
33 |
|
---|
34 | (defun buchberger (f
|
---|
35 | &optional
|
---|
36 | (start 0)
|
---|
37 | (top-reduction-only $poly_top_reduction_only))
|
---|
38 | "An implementation of the Buchberger algorithm. Return Grobner basis
|
---|
39 | of the ideal generated by the polynomial list F. Polynomials 0 to
|
---|
40 | START-1 are assumed to be a Grobner basis already, so that certain
|
---|
41 | critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
|
---|
42 | reduction will be preformed. This function assumes that all polynomials
|
---|
43 | in F are non-zero."
|
---|
44 | (declare (type fixnum start))
|
---|
45 | (when (endp f) (return-from buchberger f)) ;cut startup costs
|
---|
46 | (debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
|
---|
47 | (when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
|
---|
48 | #+grobner-check (when (plusp start)
|
---|
49 | (grobner-test (subseq f 0 start) (subseq f 0 start)))
|
---|
50 | ;;Initialize critical pairs
|
---|
51 | (let ((b (make-critical-pair-queue *normal-strategy* f start))
|
---|
52 | (b-done (make-hash-table :test #'equal)))
|
---|
53 | (declare (type critical-pair-queue b) (type hash-table b-done))
|
---|
54 | (dotimes (i (1- start))
|
---|
55 | (do ((j (1+ i) (1+ j))) ((>= j start))
|
---|
56 | (setf (gethash (list (elt f i) (elt f j)) b-done) t)))
|
---|
57 | (do ()
|
---|
58 | ((queue-empty-p b)
|
---|
59 | #+grobner-check(grobner-test f f)
|
---|
60 | (debug-cgb "~&GROBNER END")
|
---|
61 | f)
|
---|
62 | (let ((pair (dequeue b)))
|
---|
63 | (declare (type critical-pair pair))
|
---|
64 | (cond
|
---|
65 | ((criterion-1 pair) nil)
|
---|
66 | ;;((criterion-2 pair b-done f) nil)
|
---|
67 | (t
|
---|
68 | (let ((sp (normal-form (s-polynomial
|
---|
69 | (critical-pair-first pair)
|
---|
70 | (critical-pair-second pair))
|
---|
71 | f top-reduction-only)))
|
---|
72 | (declare (type poly sp))
|
---|
73 | (cond
|
---|
74 | ((universal-zerop sp)
|
---|
75 | nil)
|
---|
76 | (t
|
---|
77 | (setf sp (poly-primitive-part sp)
|
---|
78 | f (nconc f (list sp)))
|
---|
79 | ;; Add new critical pairs
|
---|
80 | (dolist (h f)
|
---|
81 | (enqueue b (make-instance 'critical-pair :first h :second sp)))
|
---|
82 | (debug-cgb "~&Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
|
---|
83 | (length f) (queue-size b)
|
---|
84 | (hash-table-count b-done)))))))
|
---|
85 | (setf (gethash (list (critical-pair-first pair) (critical-pair-second pair)) b-done)
|
---|
86 | t)))))
|
---|