[2440] | 1 | ;;; -*- Mode: Lisp -*-
|
---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
| 22 | ;;----------------------------------------------------------------
|
---|
| 23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
|
---|
| 24 | ;;----------------------------------------------------------------
|
---|
| 25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
|
---|
| 26 | ;;
|
---|
| 27 | ;; monom: (n1 n2 ... nk) where ni are non-negative integers
|
---|
| 28 | ;;
|
---|
| 29 | ;; However, lists may be implemented as other sequence types,
|
---|
| 30 | ;; so the flexibility to change the representation should be
|
---|
| 31 | ;; maintained in the code to use general operations on sequences
|
---|
| 32 | ;; whenever possible. The optimization for the actual representation
|
---|
| 33 | ;; should be left to declarations and the compiler.
|
---|
| 34 | ;;----------------------------------------------------------------
|
---|
| 35 | ;; EXAMPLES: Suppose that variables are x and y. Then
|
---|
| 36 | ;;
|
---|
| 37 | ;; Monom x*y^2 ---> (1 2)
|
---|
| 38 | ;;
|
---|
| 39 | ;;----------------------------------------------------------------
|
---|
| 40 |
|
---|
| 41 | (defpackage "MONOMIAL"
|
---|
| 42 | (:use :cl)
|
---|
| 43 | (:export "MONOM"
|
---|
| 44 | "EXPONENT"
|
---|
| 45 | "MAKE-MONOM"
|
---|
| 46 | "MAKE-MONOM-VARIABLE"
|
---|
| 47 | "MONOM-ELT"
|
---|
| 48 | "MONOM-DIMENSION"
|
---|
| 49 | "MONOM-TOTAL-DEGREE"
|
---|
| 50 | "MONOM-SUGAR"
|
---|
| 51 | "MONOM-DIV"
|
---|
| 52 | "MONOM-MUL"
|
---|
| 53 | "MONOM-DIVIDES-P"
|
---|
| 54 | "MONOM-DIVIDES-MONOM-LCM-P"
|
---|
| 55 | "MONOM-LCM-DIVIDES-MONOM-LCM-P"
|
---|
| 56 | "MONOM-LCM-EQUAL-MONOM-LCM-P"
|
---|
| 57 | "MONOM-DIVISIBLE-BY-P"
|
---|
| 58 | "MONOM-REL-PRIME-P"
|
---|
| 59 | "MONOM-EQUAL-P"
|
---|
| 60 | "MONOM-LCM"
|
---|
| 61 | "MONOM-GCD"
|
---|
| 62 | "MONOM-DEPENDS-P"
|
---|
| 63 | "MONOM-MAP"
|
---|
| 64 | "MONOM-APPEND"
|
---|
| 65 | "MONOM-CONTRACT"
|
---|
| 66 | "MONOM->LIST"))
|
---|
| 67 |
|
---|
| 68 | (in-package :monomial)
|
---|
| 69 |
|
---|
| 70 | (deftype exponent ()
|
---|
| 71 | "Type of exponent in a monomial."
|
---|
| 72 | 'fixnum)
|
---|
| 73 |
|
---|
| 74 | (deftype monom (&optional dim)
|
---|
| 75 | "Type of monomial."
|
---|
| 76 | `(simple-array exponent (,dim)))
|
---|
| 77 |
|
---|
| 78 | ;; If a monomial is redefined as structure with slot EXPONENTS, the function
|
---|
| 79 | ;; below can be the BOA constructor.
|
---|
| 80 | (defun make-monom (&key
|
---|
| 81 | (dimension nil dimension-suppied-p)
|
---|
| 82 | (initial-exponents nil initial-exponents-supplied-p)
|
---|
| 83 | (initial-exponent nil initial-exponent-supplied-p)
|
---|
| 84 | &aux
|
---|
| 85 | (dim (cond (dimension-suppied-p dimension)
|
---|
| 86 | (initial-exponents-supplied-p (length initial-exponents))
|
---|
| 87 | (t (error "You must provide DIMENSION nor INITIAL-EXPONENTS"))))
|
---|
| 88 | (monom (cond
|
---|
| 89 | ;; when exponents are supplied
|
---|
| 90 | (initial-exponents-supplied-p
|
---|
| 91 | (make-array (list dim) :initial-contents initial-exponents
|
---|
| 92 | :element-type 'exponent))
|
---|
| 93 | ;; when all exponents are to be identical
|
---|
| 94 | (initial-exponent-supplied-p
|
---|
| 95 | (make-array (list dim) :initial-element initial-exponent
|
---|
| 96 | :element-type 'exponent))
|
---|
| 97 | ;; otherwise, all exponents are zero
|
---|
| 98 | (t
|
---|
| 99 | (make-array (list dim) :element-type 'exponent :initial-element 0)))))
|
---|
| 100 | "A constructor (factory) of monomials. If DIMENSION is given, a sequence of
|
---|
| 101 | DIMENSION elements of type EXPONENT is constructed, where individual
|
---|
| 102 | elements are the value of INITIAL-EXPONENT, which defaults to 0.
|
---|
| 103 | Alternatively, all elements may be specified as a list
|
---|
| 104 | INITIAL-EXPONENTS."
|
---|
| 105 | monom)
|
---|
| 106 |
|
---|
| 107 |
|
---|
| 108 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 109 | ;;
|
---|
| 110 | ;; Operations on monomials
|
---|
| 111 | ;;
|
---|
| 112 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 113 |
|
---|
| 114 | (defun monom-dimension (m)
|
---|
| 115 | (length m))
|
---|
| 116 |
|
---|
| 117 | (defmacro monom-elt (m index)
|
---|
| 118 | "Return the power in the monomial M of variable number INDEX."
|
---|
| 119 | `(elt ,m ,index))
|
---|
| 120 |
|
---|
| 121 | (defun monom-total-degree (m &optional (start 0) (end (monom-dimension m)))
|
---|
| 122 | "Return the todal degree of a monomoal M. Optinally, a range
|
---|
| 123 | of variables may be specified with arguments START and END."
|
---|
| 124 | (reduce #'+ m :start start :end end))
|
---|
| 125 |
|
---|
| 126 | (defun monom-sugar (m &aux (start 0) (end (monom-dimension m)))
|
---|
| 127 | "Return the sugar of a monomial M. Optinally, a range
|
---|
| 128 | of variables may be specified with arguments START and END."
|
---|
| 129 | (monom-total-degree m start end))
|
---|
| 130 |
|
---|
| 131 | (defun monom-div (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 132 | "Divide monomial M1 by monomial M2."
|
---|
| 133 | (map-into result #'- m1 m2))
|
---|
| 134 |
|
---|
| 135 | (defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 136 | "Multiply monomial M1 by monomial M2."
|
---|
| 137 | (map-into result #'+ m1 m2))
|
---|
| 138 |
|
---|
| 139 | (defun monom-divides-p (m1 m2)
|
---|
| 140 | "Returns T if monomial M1 divides monomial M2, NIL otherwise."
|
---|
| 141 | (every #'<= m1 m2))
|
---|
| 142 |
|
---|
| 143 | (defun monom-divides-monom-lcm-p (m1 m2 m3)
|
---|
| 144 | "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
|
---|
| 145 | (every #'(lambda (x y z) (<= x (max y z)))
|
---|
| 146 | m1 m2 m3))
|
---|
| 147 |
|
---|
| 148 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
|
---|
| 149 | "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
|
---|
| 150 | (every #'(lambda (x y z w) (<= (max x y) (max z w)))
|
---|
| 151 | m1 m2 m3 m4))
|
---|
| 152 |
|
---|
| 153 |
|
---|
| 154 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
|
---|
| 155 | "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
|
---|
| 156 | (every #'(lambda (x y z w) (= (max x y) (max z w)))
|
---|
| 157 | m1 m2 m3 m4))
|
---|
| 158 |
|
---|
| 159 |
|
---|
| 160 | (defun monom-divisible-by-p (m1 m2)
|
---|
| 161 | "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
|
---|
| 162 | (every #'>= m1 m2))
|
---|
| 163 |
|
---|
| 164 | (defun monom-rel-prime-p (m1 m2)
|
---|
| 165 | "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
|
---|
| 166 | (every #'(lambda (x y) (zerop (min x y))) m1 m2))
|
---|
| 167 |
|
---|
| 168 | (defun monom-equal-p (m1 m2)
|
---|
| 169 | "Returns T if two monomials M1 and M2 are equal."
|
---|
| 170 | (every #'= m1 m2))
|
---|
| 171 |
|
---|
| 172 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 173 | "Returns least common multiple of monomials M1 and M2."
|
---|
| 174 | (map-into result #'max m1 m2))
|
---|
| 175 |
|
---|
| 176 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
|
---|
| 177 | "Returns greatest common divisor of monomials M1 and M2."
|
---|
| 178 | (map-into result #'min m1 m2))
|
---|
| 179 |
|
---|
| 180 | (defun monom-depends-p (m k)
|
---|
| 181 | "Return T if the monomial M depends on variable number K."
|
---|
| 182 | (plusp (monom-elt m k)))
|
---|
| 183 |
|
---|
| 184 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
|
---|
| 185 | `(map-into ,result ,fun ,m ,@ml))
|
---|
| 186 |
|
---|
| 187 | (defmacro monom-append (m1 m2)
|
---|
| 188 | `(concatenate 'monom ,m1 ,m2))
|
---|
| 189 |
|
---|
| 190 | (defmacro monom-contract (k m)
|
---|
| 191 | `(setf ,m (subseq ,m ,k)))
|
---|
| 192 |
|
---|
| 193 | (defun make-monom-variable (nvars pos &optional (power 1)
|
---|
| 194 | &aux (m (make-monom :dimension nvars)))
|
---|
| 195 | "Construct a monomial in the polynomial ring
|
---|
| 196 | RING[X[0],X[1],X[2],...X[NVARS-1]] over the (unspecified) ring RING
|
---|
| 197 | which represents a single variable. It assumes number of variables
|
---|
| 198 | NVARS and the variable is at position POS. Optionally, the variable
|
---|
| 199 | may appear raised to power POWER. "
|
---|
| 200 | (setf (monom-elt m pos) power)
|
---|
| 201 | m)
|
---|
| 202 |
|
---|
| 203 | (defun monom->list (m)
|
---|
| 204 | "A human-readable representation of a monomial M as a list of exponents."
|
---|
| 205 | (coerce m 'list))
|
---|
[3731] | 206 |
|
---|
| 207 | (defclass term (monom)
|
---|
| 208 | ()
|
---|
| 209 | (:documentation "Implements a term, i.e. a product of a scalar
|
---|
| 210 | and powers of some variables, such as 5*X^2*Y^3."))
|
---|
| 211 |
|
---|
| 212 | (defmethod print-object ((self term) stream)
|
---|
| 213 | (print-unreadable-object (self stream :type t :identity t)
|
---|
| 214 | (with-accessors ((exponents monom-exponents)
|
---|
| 215 | (coeff scalar-coeff))
|
---|
| 216 | self
|
---|
| 217 | (format stream "EXPONENTS=~A COEFF=~A"
|
---|
| 218 | exponents coeff))))
|
---|
| 219 |
|
---|
| 220 |
|
---|
| 221 | (defmethod r-equalp ((term1 term) (term2 term))
|
---|
| 222 | (when (r-equalp (scalar-coeff term1) (scalar-coeff term2))
|
---|
| 223 | (call-next-method)))
|
---|
| 224 |
|
---|
| 225 | (defmethod update-instance-for-different-class :after ((old monom) (new scalar) &key)
|
---|
| 226 | (setf (scalar-coeff new) 1))
|
---|
| 227 |
|
---|
| 228 | (defmethod multiply-by :before ((self term) (other term))
|
---|
| 229 | "Destructively multiply terms SELF and OTHER and store the result into SELF.
|
---|
| 230 | It returns SELF."
|
---|
| 231 | (setf (scalar-coeff self) (multiply-by (scalar-coeff self) (scalar-coeff other))))
|
---|
| 232 |
|
---|
| 233 | (defmethod left-tensor-product-by ((self term) (other term))
|
---|
| 234 | (setf (scalar-coeff self) (multiply-by (scalar-coeff self) (scalar-coeff other)))
|
---|
| 235 | (call-next-method))
|
---|
| 236 |
|
---|
| 237 | (defmethod right-tensor-product-by ((self term) (other term))
|
---|
| 238 | (setf (scalar-coeff self) (multiply-by (scalar-coeff self) (scalar-coeff other)))
|
---|
| 239 | (call-next-method))
|
---|
| 240 |
|
---|
| 241 | (defmethod left-tensor-product-by ((self term) (other monom))
|
---|
| 242 | (call-next-method))
|
---|
| 243 |
|
---|
| 244 | (defmethod right-tensor-product-by ((self term) (other monom))
|
---|
| 245 | (call-next-method))
|
---|
| 246 |
|
---|
| 247 | (defmethod divide-by ((self term) (other term))
|
---|
| 248 | "Destructively divide term SELF by OTHER and store the result into SELF.
|
---|
| 249 | It returns SELF."
|
---|
| 250 | (setf (scalar-coeff self) (divide-by (scalar-coeff self) (scalar-coeff other)))
|
---|
| 251 | (call-next-method))
|
---|
| 252 |
|
---|
| 253 | (defmethod unary-minus ((self term))
|
---|
| 254 | (setf (scalar-coeff self) (unary-minus (scalar-coeff self)))
|
---|
| 255 | self)
|
---|
| 256 |
|
---|
| 257 | (defmethod r* ((term1 term) (term2 term))
|
---|
| 258 | "Non-destructively multiply TERM1 by TERM2."
|
---|
| 259 | (multiply-by (copy-instance term1) (copy-instance term2)))
|
---|
| 260 |
|
---|
| 261 | (defmethod r* ((term1 number) (term2 monom))
|
---|
| 262 | "Non-destructively multiply TERM1 by TERM2."
|
---|
| 263 | (r* term1 (change-class (copy-instance term2) 'term)))
|
---|
| 264 |
|
---|
| 265 | (defmethod r* ((term1 number) (term2 term))
|
---|
| 266 | "Non-destructively multiply TERM1 by TERM2."
|
---|
| 267 | (setf (scalar-coeff term2)
|
---|
| 268 | (r* term1 (scalar-coeff term2)))
|
---|
| 269 | term2)
|
---|
| 270 |
|
---|
| 271 | (defmethod r-zerop ((self term))
|
---|
| 272 | (r-zerop (scalar-coeff self)))
|
---|