source: CGBLisp/trunk/src/ratpoly.lisp@ 14

Last change on this file since 14 was 14, checked in by Marek Rychlik, 15 years ago

Moving sources to trunk

File size: 9.6 KB
Line 
1#|
2 $Id: ratpoly.lisp,v 1.4 2009/01/22 04:07:33 marek Exp $
3 *--------------------------------------------------------------------------*
4 | Copyright (C) 1994, Marek Rychlik (e-mail: rychlik@math.arizona.edu) |
5 | Department of Mathematics, University of Arizona, Tucson, AZ 85721 |
6 | |
7 | Everyone is permitted to copy, distribute and modify the code in this |
8 | directory, as long as this copyright note is preserved verbatim. |
9 *--------------------------------------------------------------------------*
10|#
11;; Operations in the ring k(x2,x3,...,xn)[x1]
12;; The representation is (n1 a1 n2 a2 ... nk ak)
13;; where ak are rational functions in an arbitrary number of variables
14;; as in the "rat" package; this representation is referred to as RATPOLY
15;;
16;; Another representation is POLY1 and this corresponds to reppresenting
17;; polynomials as elements of k[x2,x3,...,xn][x1]
18;;
19;; In order to facilitate input, a function called
20;; poly-to-ratpoly is provided; it converts a polynomial in alist form
21;; to a form like above (plist form) with ai being rational
22;; Output is done by function ratpoly-print
23;;
24
25(defpackage "RATPOLY"
26 (:export ratpoly+ ratpoly- ratpoly* ratpoly-uminus scalar-times-ratpoly
27 rat-times-ratpoly ratpoly-divide ratpoly-remainder
28 ratpoly-gcd ratpoly-diff ratpoly-square-free
29 ratpoly-normalize ratpoly-resultant
30 deg lead ratpoly-discriminant ratpoly-print
31 poly-to-ratpoly ratpoly-to-poly poly-resultant)
32 (:use "RAT" "PRINTER" "MONOM" "DIVISION" "TERM" "POLY" "COMMON-LISP"))
33
34(in-package "RATPOLY")
35
36(proclaim '(optimize (speed 0) (debug 3)))
37
38;; Arithmetic on polynomials in one variable
39;; The polynomial a1 * x^n1 + a2 * x^n2 + ... + ak * x^nk
40;; where ai are nonzero numbers and n1>n2>...>nk is represented as list
41;; (n1 a1 n2 a2 ... nk ak)
42;; This is the sparse recursive representation
43
44(defun ratpoly+ (p q)
45 "Add polynomials P and Q."
46 (cond ((endp p) q)
47 ((endp q) p)
48 ((= (car p) (car q))
49 (let ((s (rat+ (cadr p) (cadr q))))
50 (if (rat-zerop s) ;check for cancellation
51 (ratpoly+ (cddr p) (cddr q))
52 (append (list (car p) s)
53 (ratpoly+ (cddr p) (cddr q))))))
54 ((> (car p) (car q))
55 (append (list (car p) (cadr p))
56 (ratpoly+ (cddr p) q)))
57 (t (append (list (car q) (cadr q))
58 (ratpoly+ p (cddr q))))))
59
60(defun ratpoly- (p q)
61 ;;"Subtract polynomial Q from P."
62 (cond ((endp p) (ratpoly-uminus q))
63 ((endp q) p)
64 ((= (car p) (car q))
65 (let ((s (rat- (cadr p) (cadr q))))
66 (if (rat-zerop s) ;check for cancellation
67 (ratpoly- (cddr p) (cddr q))
68 (append (list (car p) s)
69 (ratpoly- (cddr p) (cddr q))))))
70 ((> (car p) (car q))
71 (append (list (car p) (cadr p))
72 (ratpoly- (cddr p) q)))
73 (t (append (list (car q) (rat-uminus (cadr q)))
74 (ratpoly- p (cddr q))))))
75
76(defun ratpoly-uminus (p)
77 (cond
78 ((endp p) nil)
79 (t (cons (car p) (cons (rat-uminus (cadr p)) (ratpoly-uminus (cddr p)))))))
80
81(defun ratpoly* (p q)
82 "Multiply polynomials P and Q."
83 (cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
84 ;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
85 (t (append (list (+ (car p) (car q)) (rat* (cadr p) (cadr q)))
86 (ratpoly+ (ratpoly* (list (car p) (cadr p)) (cddr q))
87 (ratpoly* (cddr p) q))))))
88
89(defun scalar-times-ratpoly (scalar p)
90 "Multiply scalar SCALAR by a polynomial P."
91 (cond ((endp p) nil)
92 (t (cons (car p)
93 (cons (scalar-times-rat scalar (cadr p))
94 (scalar-times-ratpoly scalar (cddr p)))))))
95
96(defun rat-times-ratpoly (scalar p)
97 "Multiply rational function SCALAR by a polynomial P."
98 (cond ((endp p) nil)
99 (t (cons (car p)
100 (cons (rat* scalar (cadr p))
101 (rat-times-ratpoly scalar (cddr p)))))))
102
103(defun ratpoly-divide (f g)
104 "Divide polynomial F by G. Return quotient and remainder as multiple values."
105 (do* ((lp nil (- (car r) (car g)))
106 (lc nil (rat/ (cadr r) (cadr g)))
107 (q nil (nconc q (list lp lc)))
108 (r f (ratpoly- (cddr r) (ratpoly* (list lp lc) (cddr g)))))
109 ((or (endp r) (< (car r) (car g)))
110 (values q r))))
111
112(defun ratpoly-remainder (f g)
113 "The remainder of the division of a polynomial F by G."
114 (second (multiple-value-list (ratpoly-divide f g))))
115
116(defun ratpoly-gcd (f g)
117 "Return GCD of polynomials F and G."
118 (do ((h f s)
119 (s g (ratpoly-remainder h s)))
120 ((endp s) h)))
121
122(defun ratpoly-diff (f)
123 "Differentiate a polynomial."
124 (cond ((endp f) nil)
125 ((zerop (car f)) nil) ;degree 0
126 (t (append (list (1- (car f)) (scalar-times-rat (car f) (cadr f)))
127 (ratpoly-diff (cddr f))))))
128
129(defun ratpoly-square-free (f)
130 "Return the square-free part of a polynomial F."
131 (ratpoly-divide f (ratpoly-gcd f (ratpoly-diff f))))
132
133(defun ratpoly-normalize (f)
134 "Divide a non-zero polynomial by the coefficient at the highest power."
135 (rat-times-ratpoly (cons (denom (cadr f)) (num (cadr f))) f))
136
137;; A modification of Euclidean algorithm
138(defun ratpoly-resultant (f g)
139 "Return the resultant of polynomials F and G."
140 (do* ((r nil (ratpoly-remainder h s))
141 (res (list 0 (rat-constant 1 (length (car (caaadr f)))))
142 (rat-times-ratpoly
143 (scalar-times-rat
144 (expt -1 (* (deg h) (deg s)))
145 (rat-expt (lead s) (- (deg h) (deg r))))
146 res))
147 (h f s)
148 (s g r))
149 ((<= (deg s) 0)
150 (cond
151 ((or (endp s) (endp h)) nil)
152 ((plusp (deg h))
153 (rat-times-ratpoly (rat-expt (lead s) (deg h))
154 res))))))
155
156(defun deg (s)
157 (cond
158 ((endp s)
159 #+debugging(warn "ratpoly::deg: Calculating degree of 0 polynomial")
160 -1)
161 (t (car s))))
162
163(defun lead (s) (cadr s))
164
165(defun ratpoly-discriminant (p &aux (l (deg p)))
166 "The discriminant of a polynomial P."
167 (rat-times-ratpoly
168 (scalar-div-rat (expt -1 (mod (* l (1- l)) 2)) (lead p))
169 (ratpoly-resultant p (ratpoly-diff p))))
170
171(defun ratpoly-print (p vars &optional (stream t) (beg t) (p-orig p))
172 (when (endp p)
173 (when beg (format stream "0"))
174 (return-from ratpoly-print p-orig))
175 (if beg (format stream "((")
176 (format stream " + (("))
177 (poly-print (caadr p) (rest vars) stream)
178 (format stream ") / (")
179 (poly-print (cdadr p) (rest vars) stream)
180 (case (car p)
181 (1 (format stream ")) * ~a" (car vars)))
182 (0 (format stream "))" (car vars)))
183 (otherwise
184 (format stream ")) * ~a^~d" (car vars) (car p))))
185 (ratpoly-print (cddr p) vars stream nil p-orig))
186
187(defun poly-to-ratpoly (p)
188 (poly1-to-ratpoly (poly-to-poly1 p)))
189
190;; Convert a polynomial to a polynomial in k[x2,...,xn][x1]
191(defun poly-to-poly1 (p &aux (htab (make-hash-table)) q)
192 (dolist (term p)
193 (push (cons (cdar term) (cdr term))
194 (gethash (caar term) htab nil)))
195 (maphash #'(lambda (key val) (push (cons key val) q)) htab)
196 (mapcan #'(lambda (x &aux (deg (car x)) (coef (cdr x)))
197 (list deg
198 (sort-poly coef)))
199 (sort q #'> :key #'car)))
200
201
202;; Convert poly1 to ratpoly, i.e. add denominators=1
203(defun poly1-to-ratpoly (p)
204 (unless (endp p)
205 (cons (car p)
206 (cons
207 (cons (cadr p)
208 (list
209 (cons (make-list (length (caaadr p)) :initial-element 0) 1)))
210 (poly1-to-ratpoly (cddr p))))))
211
212(defun ratpoly-to-poly1 (p)
213 "Convert every coefficient of ratpoly to polynomial if possible"
214 (cond
215 ((endp p) nil)
216 (t (cons (car p)
217 (cons (rat-to-poly (cadr p))
218 (ratpoly-to-poly1 (cddr p)))))))
219
220(defun poly1-to-poly (p)
221 "Convert a ratpoly, whose coeffs have been converted to poly,
222into a poly structure, i.e. tack in powers of first variable."
223 (cond
224 ((endp p) nil)
225 (t
226 (append
227 (mapcar #'(lambda (x) (cons (cons (car p) (car x)) (cdr x))) (cadr p))
228 (poly1-to-poly (cddr p))))))
229
230(defun ratpoly-to-poly (p)
231 (poly1-to-poly (ratpoly-to-poly1 p)))
232
233
234(defun poly-resultant (f g)
235 "Calculate resultant of F and G given in poly i.e. alist representation."
236 (ratpoly-to-poly
237 (ratpoly-resultant (poly-to-ratpoly f)
238 (poly-to-ratpoly g))))
239
240#|
241;;----------------------------------------------------------------
242;; Multi-variable GCD algorithm
243;; Roughly p. 134 of Davenport, Siret, Tournier
244;;----------------------------------------------------------------
245(defun poly-gcd (A B)
246 (multiple-value-bind (Ap Ac)
247 (primitive-part (poly-to-poly1 A))
248 (multiple-value-bind (Bp Bc)
249 (primitive-part (poly-to-poly1 B))
250 (poly* (poly1-to-poly (primitive-part (euclid Ap Bp)))
251 (poly1-to-poly
252 (list 0
253 (cond
254 ((numberp Ac) (list (cons nil (gcd Ac Bc))))
255 (t (poly-gcd Ac Bc)))))))))
256
257;; This operates on poly1
258(defun content1 (A)
259 (cond
260 ((endp A) (error "content1: Content of 0 is not defined."))
261 ((endp (caaadr A)) ;1-variable poly
262 (content1-aux A)) ;a number
263 ((endp (cddr A)) (cadr A))
264 (t (poly-gcd (cadr A) (content1 (cddr A))))))
265
266;; 1-variable case
267(defun content1-aux (A)
268 (cond ((endp A) (error "content1-aux: Content of 0 is not defined."))
269 ((endp (cddr A)) (cdaadr A))
270 (t (gcd (cdaadr A) (content1-aux (cddr A))))))
271
272;; operates on poly
273(defun content (A &aux (A1 (poly-to-poly1 A)))
274 (content1 A1))
275
276;; Operates on poly1
277(defun primitive-part (A)
278 (let ((Ac (content1 A)))
279 (values (divide-coeffs A Ac) Ac)))
280
281;; Operates on A in poly1 form and A in poly form of 1 variable less
282(defun divide-coeffs (A Ac)
283 (cond
284 ((endp A) nil)
285 ((numberp Ac) ;ground case
286 (cons (car A)
287 (cons (list (cons nil (floor (cdaadr A) Ac)))
288 (divide-coeffs (cddr A) Ac))))
289 (t (cons (car A)
290 (cons
291 (multiple-value-bind (q r)
292 (divide (cadr A) (list Ac))
293 (unless (endp r) (error "divide-coeffs: not divisible."))
294 (car q))
295 (divide-coeffs (cddr A) Ac))))))
296
297;; Euclid operates on poly1
298(defun euclid (A B)
299 (ratpoly-to-poly1 (ratpoly-gcd (poly1-to-ratpoly A)
300 (poly1-to-ratpoly B))))
301
302|#
303
Note: See TracBrowser for help on using the repository browser.